مشاور و تولید کننده محصولات افزودنی و قطعات جانبی بتن _ ارائه دهنده خدمات فنی و مهندسی بتن

Produce & Repconsultant, producer of concrete products providing engineering and technical services
مشاوره و ارائه طرح مقاوم سازی سازه های بتنی - مهندسی و اجرای مقاوم سازی سازه های بتنی به روش اجرای الیاف FRP ، ژاکت بتنی ، فلزی

کارشناسی ، طرح و اجرای مقاوم سازی سازه های بتنی - مقاوم سازی سازه های بتنی با الیاف FRP


مجموعه مهندسی و اجرایی کلینیک فنی و تخصصی بتن ایران ، آمادگی دارد تا خدمات مهندسی و مشاوره ای خود را در زمینه مقاوم سازی سازه های بتنی صنعتی و مسکونی با استفاده از روشهای مختلف مانند استفاده از الیاف FRP و ... با کارفرمایان محترم  ارائه نماید. 

هر سازه تازه ساخت و یا قدیمی می تواند بنا به دلایلی چون اشتباهات طراحی ، مشکلات و معایب ساخت ، تغییر کاربری ، اتمام زمان بهره برداری ، تغییرات مشخصات سازه ای و ... نیازمند عملیات مقاوم سازی باشد . امروزه روشهای مختلفی برای مقاوم سازی سازه های بتنی موجود می باشد که می توان طی یک فرآیند موثر و منطقی از آنها استفاده و بهره گرفت . از این رو کلینیک فنی و تخصصی بتن آمادگی دارد تا در سه بخش ، کارشناسی ، طراحی و اجرا مقاوم سازی سازه های بتنی به کارفرمایان محترم ارائه خدمات نماید.


خدمات اجرائی مقاوم سازی

مقاوم سازی با FRP

تهیه، نصب و اجرای مصالح کامپوزیت FRP در صنایع مختلف

اجرای سیستمهای پیش تنیده و پس تنیده FRP (FRP post tensioning systems)

تعمیر لوله های خورده شده نفت و گاز با پوشش کامپوزیتی FRP

مقاوم سازی با FRP جهت افزایش طبقات

Anchoring انکرینگ آرماتور

ترمیم ترکهای بتن با روش تزریق اپوکسی و تزریق پلی اورتان

اجرای کفپوش های اپوکسی و پلی یورتان


تعویض تجهیزات و قطعات پل

تعویض درزهای انبساط پل و درزهای الاستومریک آسیب دیده

لیفت عرشه و تعویض تکیه گاه‌ها و نئوپرن پل

نصب میراگرهای مختلف (اصطکاکی، جاری شونده و ویسکوز)

نصب انواع مختلف جداگرهای لرزه ای لاستیکی و لغزشی


ترمیم و بهسازی سازه های دریائی با مصالح کامپوزیتی FRP

حفاظت کاتدیک سازه‌های در مستعد خوردگی

ترمیم و مقاوم سازی پلها

ترمیم و بهسازی تونلها

مقاوم سازی سازه های بنائی و بناهای تاریخی


ترمیم ترک بتون و بتونهای کرمو، یخ زده و ...

تعمیر بتنهای معیوب با بتنهای ویژه

اجرای دیوار برشی بتنی و بادبندهای فولادی جدید به روش کاشت آرماتور و شاتکریت

ترمیم، بهسازی و مقاوم سازی پیشرفته  سازه ها


الیاف ، و رق یا کامپوزیت FRP و انواع آن:

مصالح Fiber Reinforcement Polymer یا فیبرهای پلیمری تقویت شده FRP که در مسائل مرتبط با مقاوم سازی و پوشش سازه های بتنی و فلزی کاربرد دارند، از دو جزء اساسي تشكيل می‌شوند؛ فايبر (الياف) و رزين (مادة چسباننده). فايبرهای FRP كه دارای مشخصات فنی الاستيك و بسيار مقاوم هستند، جزء اصلي باربر در مادة FRP محسوب مي‌شوند. فیبرهای تشکیل دهنده FRP می توانند در یک راستا یا در دو راستای عمود بر هم قرار داشته باشند. رزين FRP نیز اصولاً به عنوان يك محيط چسباننده عمل مي‌كند كه فايبرها را دركنار يكديگر نگاه مي‌دارد. ساختمان FRP در شکل و ترکیبات مختلف تولید می‌شوند. مهمترین آنها که در کارهای سازه‌ ای استفاده می شوند، عبارتند از:

·         الیاف FRP

·         لمینیت FRP

·         میلگردهای FRP

الیاف FRP:

الیاف كامپوزيت (FRP Sheets) FRP، ورقه‌هاي با ضخامت چند ميليمتر از جنس FRP هستند. ورقه‌های FRP با چسب‌هاي مستحكم و مناسب به سطح بتن چسبانده مي‌شوند. ورقه های FRP پوشش مناسبي جهت ايزوله كردن و مقاوم سازی بتن سازه‌هاي آبي از محيط خورندة مجاور هستند. همچنين از ورقه‌هاي كامپوزيتي FRP جهت تعمير و تقويت سازه‌ هاي آسيب ديده (ناشي از زلزله و يا ناشي از خوردگي آبهاي يون‌دار) به منظور مقاوم سازی با FRP استفاده مي‌شوند. مصالح FRP بر اساس فیبرهای تشکیل دهنده به چندین دسته تقسیم می شوند که سه نوع آن کاربرد بیشتری دارند:

الیاف GFRP – پلیمرهای FRP مسلح شده با الیاف شیشه (Glass Fiber Reinforced Polymers)




الیاف CFRP – پلیمرهای FRP مسلح شده با الیاف کربن (Carbon Fiber Reinforced Polymers)




الیاف AFRP – پلیمرهای FRP مسلح شده با الیاف آرامید (Aramid Fiber Reinforced Polymers)



الیاف BFRP – پلیمرهای FRP مسلح شده با الیاف بازالت (Basalt Fiber Reinforced Polymers)


میل گردهای FRP:

از انواع میلگردهای FRP (آرماتور FRP) سه نوع الیاف شیشه GFRP، الیاف کربن CFRP و الیاف آرامید AFRP در صنعت ساختمان کاربرد دارند. دلیل عمدة استفادة از میلگردهای FRP در داخل بتن، علاوه بر کاربرد های مقاومسازی با الیاف بتن FRP جلوگیری از پدیدة خوردگی و افزایش میرایی ایجاد شده در سازه در برابر ارتعاش می باشد. هر چند كه استفاده از میل گردهای FRP در بتن، به دلیل چگالی پایین صفحات FRP ، به جای نمونه های فلزی سبب كاهش وزن بنا نیز خواهد شد، اما در استفاده از این میل گردهای اف آر پی ، مساله كاهش وزن اهمیت ناچیزی نسبت به دو مورد بیان شده دارد. دلیل بالا بودن ضریب میرایی كامپوزیتها، خواص غیركشسان آنهاست كه انرژی جذب شده را میرا می كنند. در حالی كه مواد فلزی حالت كشسان داشته و انرژی جذب شده را میرا نمی نمایند. بنابراین مواد كامپوزیتی در برابر ارتعاشات زلزله عملكرد بهتری خواهند داشت و بهترین گزینه جهت مقاومت سازه و مقاوم سازی با FRP در برابر لرزه ها خواهند بود. کاربرد میلگردهای FRP به جای آرماتور فلزی، به طور قابل ملاحظه ای از زیانهای ناشی از خوردگی میل گرد در محیط های خورنده و اسیدی جلوگیری می كند. ظهور تخریب ناشی از پدیدة خوردگی در بتن مسلح شده با میلگرد فلزی بدین گونه است كه نخست میله های فلزی داخل بتن دچار زنگ زدگی شده و اكسید می شوند. سپس این اكسیدها به سمت سطح بیرونی بتن شروع به پیشروی كرده و با انتشار در داخل بتن باعث از بین رفتن آن می شوند. این پدیده در محیط های اسیدی نیز به وضوح دیده می شود.

بدین ترتیب با خورده شدن دو جزء فلزی و بتنی سازه، زمینة تخریب كامل سازة بتنی فراهم می گردد. روشهای سنتی گذشته مانند چسباندن صفحات فلزی بر روی سازه یا اضافه كردن ضخامت بتن جهت مقابله با پدیدة خوردگی ضمن آنكه مشكل خوردگی فلز را مرتفع نخواهد نمود، سبب افزایش وزن سازه و آسیب پذیرتر شدن آن در برابر زلزله نیز خواهد شد. جهت جلوگیری از این امر می توان با تقویت سطح خارجی سازة بتنی توسط مواد مركب و استفاده از میلگردهای FRP در داخل بتن، هم مشكل خوردگی فلز داخل سازه را حل نمود و هم جلوی مختل شدن كارایی سازه در صورت خورده شدن بتن را گرفت كه این بهترین روش مقابله با پدیدة خوردگی در یك سازه بتنی در محیط های خورنده و اسیدی (با استفاده از پروفیل FRP با خصوصیات مناسب) می باشد .


دلایل استفاده روز افزون از پوشش FRP:

·         افزایش تولید ، تامین و توزیع وسیع که باعث سادگی خرید و فروش FRP شده است.

·         بهبود خصوصیات FRP در سالهای اخیر

·         کاربرد وسیع مواد FRP در تقویت سازه های بتنی و فولادی (از FRP در سازه های بتنی ، فولادی ، پل و تاسیسات پتروشیمی و صنعتی استفاده می شود)

·         کاربرد FRP در بتن مقرون به صرفه تر از تخریب سازه بتن آرمه است

·         روشهای تولید اصلاح شده که منجر به تولید با خواص مقاومتی و مشخصات فنی بالاتر و کاهش هزینه تولید شده است.

·         بهینه کردن ترکیب فیبر اف آر پی با ماتریس چسب اف آر پی (رزین اپوکسی FRP) برای سازگاری مناسب تر با یکدیگر در سیستم های FRP


مزایای استفاده از ورقه FRP:

·         دوام بالا ، هزینه و قیمت مناسب برای خرید FRP

·         سبک وزن بودن و چگالی پایین صفحات FRP

·         مشخصات فنی بالا شامل مدول و مقاومت بالا

·         خصوصیات مناسب و مقاومت در برابر خوردگی

·         قابل کاربرد در برابر محیط های اسیدی و ترکیبات شیمیایی (مقاومت ضد اسیدی)

·         نفوذ ناپذیری مغناطیسی که مناسب برای مکانهایی که در آنجا دستگاه های حساس به میدان مغناطیسی است

·         مقاومت در برابر ضربه

·         ضخامت کم الیاف FRP

·         اتصال FRP و همپوشانی آسان در بتن و آهن

·         حمل و نقل آسان به دلیل وزن کم الیاف

·         خصوصیات مناسب به دلیل اجرای ساده ورق ها و الیاف

·         سرعت کار بیشتر و نحوه نصب آسان در بتن اف آر پی

·         توجیه اقتصادی برای تقویت، ترمیم و مقاومسازی پروژه های سنگین به عنوان مثال پلها

·         سطح تمام شده تمیز پوشش

·         ساختمان FRP عایق مناسبی در مقابل محیط اسیدی ، شیمیایی و خورنده می باشد.

·         عدم توقف کاربری در زمان اجرای تقویت با FRP

·         عدم افزایش ابعاد مقاطع در مقاوم سازی بتن با FRP

​در دنیای امروز پروژه های ترمیم، بازسازی و مقاوم سازی بسیار فراگیر شده و نکات و مسائل جدیدی مطرح شده که با استفاده از نشریه های سیستم FRP قابل حل هستند. مهمترین این موارد که توسط مصالح FRP مقاومسازی می شوند عبارتند از:

مشکلات

راهکار پیشنهادی مقاوم سازی


مشکلات

راهکار پیشنهادی مقاوم سازی

خوردگی و فرسایش سازه ای در سیستم های صنعتی، پالایشگاه ها و پتروشیمی

مقاومسازی و تقویت FRP با رزین اپوکسی

ترک خوردگی و کنده شدگی بتن ناشی از خوردگی

ترک خوردگی و کنده شدگی بتن ناشی از خوردگی

کاهش ظرفیت سازه ای

ترمیم و تقویت المان ها و اجزا توسط FRP

نفوذ کلریدها

تزریق رزین اپوکسی هاردنر در اجزای سازه و یا پوشش المانها

کربناته شدن

محافظت بتن در محیط های اسیدی توسط مواد پلیمری

خوردگی در اثر مجاورت فلزات غیر مشابه

تزریق رزین اپوکسی ضد اسید

خوردگی فولادهای پس کشیدگی

جایگذاری میلگرد FRP به جای میل گردهای پوسیده شده بتن

هجوم سولفات در بتن

دور پیچی المان های ستونها، تیرها و کفها با الیاف FRP

تابیدگی دال های ریخته شده روی سطوح بستر

تامین کمبود مقاومت با پروفیل کامپوزیتی

اشتباهات طراحی

مقاومسازی با سیستمهای ترکیبی پلیمر و روشهای سنتی

میلگرد گذاری نادرست بتن

استفاده از الیاف CFRP و الیاف GFRP در تیرها ، ستون ها و دیوار بتنی

اجرای اشتباه خاموت ها

دور پیچی صفحات FRP و محصور سازی با الیاف پلیمری در بتن

جدا شدگی سنگ دانه ها بتن

کاربرد FRP در بتن

خیز غیر مجاز دال و سقف بتن آرمه

تقویت خمشی توسط نشریه مقاوم سازی و نشریه FRP

کرمو شدگی سطح بتن و تجمع سنگدانه ها

افزایش مقاومت بتن توسط محصور سازی و دور پیچی

تغییر در کاربری سازه ها و بارگذاریهای اضافی ثقلی و جانبی

استفاده از سیستم های مهار جانبی و تقویت موضعی اعضا با اف آر پی

نیاز به کاهش زمان ایجاد وقفه در حین ترمیم و مقاوم سازی

سرعت بالای اجرای الیاف، لمینت، و میلگرد کامپوزیتی

افزایش عمر مفید سازه در کنار به حداقل رساندن سرمایه گذاری

ساخت سیستم با مقاومت ، خصوصیات و دوام بالا در محیط اسیدی و خورنده

خوردگی میلگرد در بتن

کاشت میلگرد FRP در داخل عضو بتنی

ظرفیت خمشی ناکافی بتن

مقاوم سازی بتن با الیاف کامپوزیتی

از بین رفتن پیش تنیدگی به دلیل خوردگی در بتن پیش تنیده

جایگذاری آهن با پلیمر کربن یا شیشه

افزایش تعداد طبقات ساختمان های بتنی

مقاوم سازی تیرها و ستونهای بتنی با استفاده از مواد FRP

افزایش ظرفیت برشی

مقاومسازی با مواد کامپوزیت اف آر پی

انتقال برش بین اعضا

استفاده از دتایل های مناسب مقاوم سازی شرکت کلینیک فنی و تخصصی بتن ایران

ترک در تیر بتنی و عرشه پل

مقاوم سازی FRP در طول و عرض تیر

این لینک کلیک نمایید.

ترمیم با استفاده از پلیمر ها به جای روش های سنتی

ترک در ستون های ساختمان ها و پل ها

محصورسازی و confinement با الیاف اف آر پی


مقاوم سازی دالها با FRP

مقاوم سازی و بهسازی کف و دالهای بتنی بخصوص سقف بتنی از طریق پوشش FRP (جهت رسیدن به ظرفیت و عملکرد مورد نظر)، باعث افزایش مقاومت خمشی، برشی و همچنین افزایش مقاومت در برابر خوردگی، ارتعاش، سایش (که سبب افزایش عمر دال می‌گردد) و ... می‌شود.

نوع المان سازه ای:

دالهای بتنی

سقف های کامپوزیت

سقفهای طاق ضربی

سقف های تیرچه بلوک

سقف های تیرچه کرومیت

هدف از مقاوم سازی با ورقه های FRP:

افزایش مقاومت خمشی دالهای یک طرفه

افزایش مقاومت خمشی دالهای دو طرفه

تقویت و افزایش مقاومت برشی

افزایش سختی

کنترل گسترش ترک

افزایش دوام و عمر

افزایش شکل پذیری

ترمیم و تقویت ناشی از خوردگی

افزایش مقاومت در برابر خوردگی





مقاوم سازی با الیاف FRP پدستال ها و فونداسیونها

در مراکز صنعتی پدستالها برای باربری ادوات مانند سیستم پمپاژ و تکیه گاههای ستون فولادی مورد استفاده قرار میگیرند. ارتعاشات ناشی از سیستم ها در اثر انتقال به پدستالهای بتونی، باعث ترک خوردن و ورقه ورقه شدن بتن می‌گردد. سیستم مقاوم سازی با الیاف FRP ترکها را محدود کرده و پدستال را از خوردگی آتی محافظت می‌کند.

هدف از مقاوم سازی:

افزایش مقاومت برشی

افزایش عمر و دوام

کنترل ترک

افزایش مقاومت در برابر خوردگی




مقاوم سازی ستونها با تکنولوژی FRP

برای مقاوم سازی ، تقویت و افزایش مقاومت ستونهای بتنی و فولادی در برابر زلزله، سایش، خوردگی، حرارت، آتش سوزی و یا باز گرداندن ستون به عملکرد دلخواه می‌توان از FRP Wrap ها استفاده کرد. بدین ترتیب ضمن افزایش مقاومت خمشی و برشی ستون، مقاومت در برابر مواد شیمیایی نیز افزایش یافته و عمر سازه و شکل پذیری آن از طریق محصور شدگی با FRP افزایش می‌یابد.

نوع المان سازه ای:

ستونهای بتنی

لوله های بتنی

ستونهای فولادی

لوله های فولادی

هدف از مقاوم سازی با FRP:

افزایش مقاومت خمشی

افزایش مقاومت برشی

افزایش مقاومت فشاری

کنترل گسترش ترک

افزایش دوام و عمر

افزایش شکل پذیری

ترمیم ناشی خوردگی

افزایش مقاومت در برابر خوردگی 


نصب و اجرای مصالح FRP

الیاف و مصالح مختلف FRP می‌توانند نوسط روشهای دستی، روش دور پیچی با دستگاه مکانیزه (ماشینی)، دستگاه آغشته ساز الیاف،  عمل آوری سریع در محل اجرا و یا از طریق روش انتقال تزریق رزين (Resin Transfer Molding) بدون نیاز به حفاری (Trench less) بر روی المانهای مورد نظر نصب گردد. مراحل گام به گام اجرای الیاف FRP برای تقویت و مقاوم سازی به شرح زیر است:



1. آماده سازی سازه مقاوم سازی: قبل از انجام هرگونه تقویت با ورقه های FRP بایستی درصورت نیاز بتن تخریب شده را جدا کرده و در صورت رسیدن به آرماتور خورده شده اقدامات مربوط به ترمیم آنها یا تعویض آنها را انجام دهیم و سپس با مصالح یکنواخت سطح آنها را بپوشانیم.

2. آماده سازی سطح: پس از تعمیر سازه آسیب دیده، سطح آن کاملا صاف شده و نامنظمی ها و زوایای تند و تیز گوشه ها به وسیله ماسه پاشی Send Blast، ماله، فشار آب Water Jet یا ساب کاملا گرد می شود.

3. به کار بردن آستری یا پرایمر FRP: برای افزایش چسبندگی و جلوگیری از جدایش ورقه FRP  از لایه چسب یا رزین اپوکسی بین بتن و ورقه، با غلتک یک لایه اپوکسی FRP با لزجت کم به طور موضعی روی سطح موردنظر به عنوان پرایمر می‌مالند.

4. بتونه کردن سطح مقاوم سازی: یک لایه چسب FRP با ویسکوزیته بالا برای پرکردن خلل و فرج و فرورفتگیها در محلهای مورد نیاز به کار برده می شود. چسبندگی مناسب الیاف یا لمینت FRP با اجرای مستقیم مصالح ترمیم بر روی لایه زیرین که به درستی آماده شده است حاصل می‌شود.

5. بریدن شیت FRP: بر روی یک سطح تمیز و آماده که عاری از هر گونه آلودگی، چسب و ناصافی است ورقه FRP مطابق مشخصات و جزئیات ارائه شده بریده می شود.

6. اشباع کردن الیاف FRP: در پروژه های بزرگ مقاوم سازی ورقه ها با دستگاههای گرداننده خاص در کارخانه اشباع می شوند و لایه اپوکسی یا ماتریس رزین به آن اضافه می شود و فقط کافی است در محل مورد نظر چسبانده شود ولی در کارهای کوچکتر در محل کارگاه رزین FRP روی سطح موردنظر مالیده شده سپس ورقه FRP خشک و بدون چسب بر روی سطح بتن چسبانده می شود.

7. کاربرد  مصالح FRP: الیاف را با دقت روی سطح هموار و بدون هیچ گونه آلودگی، حباب هوای محبوس به صورت کاملا صاف و مستقیم دقیق می چسبانند.

8. نظارت بر کنترل کیفیت FRP: در زمان عمل آوری 2 تا 6 ساعت بسته به شرایط حاکم، سطح مقاوم سازی شده با FRP چک و کنترل می شوند تا هیچ گونه حباب هوا بین لایه FRP و بتن حبس نشده باشد و خم شدگی یا بیرون زدگی (Sagging) وجود نداشته باشد و ناظرهای تربیت شده ای برای کنترل کیفیت FRP استفاده می شود.

9. اطمینان از کیفیت اجرای مقاوم سازی با FRP: گزارش های کنترل کیفیت تهیه شده و به خوبی نگهداری می شوند تا اطمینان از اجرای موفقیت آمیز ترمیم ، تقویت و تعمیر با FRP حاصل شود.

10. لایه رویه FRP: پس از عمل آوری و نظارت بر کیفیت اجرای مقاوم سازی، ورقه های FRP به منظور حفاظت، نگهداری و حفظ زیبایی و معماری با یک لایه بتن رویین یا ماده ای دیگر پوشانده می شوند.



مشخصات عمومی محصولات الیاف یا کامپوزیت FRP:

مشخصات کلی و مکانیکی کامپوزیتهای FRP به شرح زیر می‌باشد:

مقاومت FRP در مقابل خوردگی

بدون شك برجسته‌ترین و اساسی‌ترین خاصیت سیستم های كامپوزیتی FRP مقاومت FRP در مقابل خوردگی و خصوصیات فنی بالای الیاف و صفحات FRP در مقاوم سازی است. در حقیقت این خاصیت ماده FRP تنها دلیل نامزد كردن آنها به عنوان یك گزینه جانشین برای اجزاء فولادی و نیز میلگردهای فولادی است. به خصوص در سازه‌های بندری، ساحلی و دریایی و همچنین در سازه های مرتبط با نفت ، پتروشیمی و پالایشگاهی مشخصات فنی مناسب كامپوزیت FRP در مقابل خوردگی، سودمندترین مشخصه میلگردهای FRP است.

مقاومت FRP

مصالح FRP معمولاً مقاومت كششی بسیار بالایی دارند، كه از مقاومت كششی فولاد به مراتب بیشتر است. مقاومت كششی بالای مواد FRP كاربرد آنها را برای سازه‌های بتن آرمه، خصوصاً برای سازه‌های پیش‌تنیده بتنی و مقاوم سازی بسیار مناسب نموده است. مقاومت كششی مصالح FRP اساساً به مقاومت كششی، نسبت حجمی، اندازه و سطح مقطع فایبرهای FRP بكار رفته در آنها بستگی دارد. مقاومت كششی محصولات FRP برای میله‌های با الیاف كربن 1100 تا 4900 Mpa ، برای میله‌های با الیاف شیشه تا 2300 Mpa، و برای میله‌های با الیاف آرامید تا MPa 1650 گزارش شده است. چنین مشخصات فنی بالا اهمیت مقاوم سازی با FRP را بیش از بیش روشن می سازد.

مدول الاستیسیته FRP

مدول الاستیسیته الیاف FRP اكثراً در محدوده قابل قبولی قرار دارند. مدول الاستیسیته FRP ساخته شده از الیاف كربن، شیشه و آرامید به ترتیب در محدوده 200 تا 230 ، 70 و GPa 60 گزارش شده است. برای مقاوم سازی و تقویت بتن از این الیاف استفاده می شود.

وزن مخصوص FRP

وزن مخصوص FRP به مراتب كمتر از وزن مخصوص فولاد است؛ به عنوان نمونه وزن مخصوص كامپوزیتهای CFRP یك سوم وزن مخصوص فولاد است. نسبت بالای مقاومت به وزن در الیاف FRP از مزایای عمده آنها در كاربردشان به عنوان تقویت و مسلح كننده بتن محسوب می شود.

عایق بودن FRP

مصالح FRP خاصیت عایق بودن بسیار عالی دارند. به بیان دیگر، این مواد از نظر مغناطیسی و الكتریكی خنثی بوده و عایق مناسبی محسوب می‌شوند. بنابراین استفاده از بتن مسلح به FRP به جای استفاده از میل گردهای فولادی در قسمتهایی از بیمارستان كه نسبت به امواج مغناطیسی حساس هستند. و در مسیرهای هدایتی قطارهای شناور مغناطیسی و همچنین در باند فرودگاهها و مراكز رادار بسیار سودمند خواهد بود.

مقاومت خستگی FRP

خستگی خاصیتی است كه در بسیاری از مصالح ساختمانی وجود داشته و در نظر گرفتن آن ممكن است به شكست غیر منتظره، خصوصاً در اجزایی كه در معرض سطوح بالایی از بارها و تنش‌های تناوبی قرار دارند، منجر شود. در مقایسه با فولاد، رفتار مصالح FRP در پدیده خستگی بسیار عالی است؛ به عنوان نمونه برای تنش‌های كمتر از یك دوم مقاومت نهایی، مواد FRP در اثر خستگی گسیخته نمی‌شوند و مناسب مقاوم سازی با FRP در بتن می باشند.

خزش FRP

پدیده گسیختگی ناشی از خزش اساساً در تمام مصالح ساختمانی وجود دارد؛ با این وجود چنانچه كرنش ناشی از خزش جزء كوچكی از كرنش الاستیك باشد، عملاً مشكلی بوجود نمی‌آید. در مجموع، رفتار خزشی كامپوزیت‌های FRP بسیار خوب است؛ به بیان دیگر، اكثرFRP های در دسترس، دچار خزش نمی شوند.

چسبندگیFRP با بتن در مباحث مقاومسازی

خصوصیت چسبندگی، برای هر ماده‌ای كه به عنوان مسلح كننده بتن بكار رود، بسیار مهم تلقی می شود. تحقیقات اخیر در دنیا مقاومت چسبندگی خوب و قابل قبولی را برای میله‌های كامپوزیتی FRP در مقاوم سازی بتن گزارش می كند.

برای مشاهده مشخصات شیت های کربن، شیشه و آرامید و میلگرهای FRP شرکت کلینیک فنی و تخصصی بتن ایران لطفا به قسمت محصولات وبسایت مراجعه کنید.


کاربردهای FRP

به دنبال فرسوده شدن سازه‌های زیر‌بنایی و نیاز به تقویت و مقاوم سازی سازه‌ها برای برآورده کردن شرایط سخت‌گیرانه طراحی طبق نشریه های جدید، طی دو دهه اخیر تأکید فراوانی بر روی تعمیر و مقاوم‌سازی ساختمان ها در سراسر جهان، صورت گرفته است. از طرفی، بهسازی لرزه‌ای سازه‌ها بخصوص در مناطق زلزله‌ خیز، اهمیت فراوانی یافته است. در این میان تکنیک‌های استفاده از مواد مرکب FRP بعنوان مسلح‌ کنندة خارجی به دلیل خصوصیات و مشخصات فنی الیاف CFRP و GFRP، از جمله مقاومت بالا، سبکی، مقاومت شیمیایی و سهولت اجرا، در مقاوم‌سازی و تقویت سازه‌های بتنی و فولادی اهمیت ویژه‌ای پیدا کرده‌اند. از طرف دیگر، این تکنیک‌ها به دلیل اجرای سریع و هزینه‌های کم مورد پسند جامعه مهندسی برای کاربرد FRP قرار گرفته است.

دلیل دیگر استفاده از صفحات و پروفیل های FRP و کاربرد آن در داخل بتن، جلوگیری از پدیده خوردگی در برابر اسید های قوی و افزایش عمر سازه در برابر ارتعاش زلزله می باشد. هرچند که استفاده از پروفیل FRP به جای فلز سبب کاهش وزن بنا نیز خواهد شد، اما در استفاده از این صفحات، مساله کاهش وزن اهمیت ناچیزی نسبت به دو مورد بیان شده دارد. دلیل بالا بودن عمر کامپوزیت های FRP خواص غیر کشسان الیاف است. در حالی که مواد فلزی حالت کشسان داشته و انرژی جذب شده را میرا می نمایند. بنابراین مواد کامپوزیتی FRP در برابر ارتعاشات زلزله عملکرد بهتری خواهند داشت و بهترین گزینه جهت مقاوم سازی ساختمان FRP خواهد بود (برای مقابله با زلزله).  مصالح پلیمری یا کامپوزیتی FRP در واقع به عنوان پوشش های محافظتی، مقاومت سازه را در برابر مواد شیمیایی بسیار خورنده (محیط های اسیدی قوی)، مولکولهای پر تحرک و آشفته آب، دمای بالا و سایش افزایش می دهد. استفاده از این پوشش ها به همراه کامپوزیتهای FRP ضمن افزایش مقاومت المانهای زیر، آنر نفوذناپذیر و عایق نیز می کند.



آزمایش و تست FRP

استفاده از الیاف FRP روش بسیار مناسبی برای ترمیم و تقویت سازه های بتنی در مباحث مقاوم سازی در شرایط محیطی مختلف از جمله شرایط محیطی مهاجم خوردنده می باشند. این الیاف استحکام کششی و مدول الاستیسته بسیار بالایی نسبت به مصالح دیگر در مقایسه با وزن خود دارند. با توجه به کاربرد بسیار مفید، حساس و گسترده الیاف FRP، باید کنترل هایی بر کیفیت این محصولات قبل و بعد از اجرا صورت گیرد تا از علمکرد صحیح این الیاف اطمینان پیدا کنیم. لذا شایسته است که طبق استاندارد ها و نشریه های بین المللی FRP معتبر آزمایشاتی را انجام بدهیم.

از جمله آزمایشاتی که قبل از اجرای مقاوم سازی صورت می گیرد آزمایش مقاومت کششی الیاف FRP می باشد. این تست برای بدست آوردن ظرفیت نیروی کششی و کرنش کششی نهایی صورت می گیرد .نتایج بدست آمده از این آزمایش برای تعیین مشخصات مصالح، کنترل کیفیت و تضمین، طراحی و تحلیل و ... مورد استفاده قرار می‌گیرد. این تست طبق استاندارد ASTM D3039 انجام می‌پذیرد.

آزمایش مهم دیگری که بعد از اجرای ورقه های CFRP و GFRP جهت کنترل کیفیت و تضمین اجرای تقویت و مقاوم سازی سازه صورت می گیرد آزمایش Pull off می باشد. تست Pull off در مقاوم سازی با FRP برای کنترل کیفیت و یکپارچگی در عملکرد، ناشی از چسبندگی مناسب سیستم FRP به سطح صورت می گیرد.







مقاوم سازی شمع ها و سازه های دریایی با FRP

شمع ها یا پی های عمیق برای انتقال بار از سازه به سنگ بستر یا خاک سخت طراحی و مورد استفاده قرار می‌گیرند. شمعها با قرار گرفتن در معرض خاک های قلیایی، رطوبت و اکسیژن، خورده شده و به سرعت مقاومت و عملکرد خود را از دست می دهند. به ویژه اگر در محیط آبی باشد، عمل خوردگی و ضعف با سرعت بیشتری صورت می پذیرد. با استفاده از این سیستم مقاوم سازی می توان ضمن افزایش مقاومت سازه ای، مقاومت آنها را در برابر مواد شیمیایی بسیار بالا برد. استفاده از انواع FRP به نوع شمع و نحوه شمع کوبی بستگی نداشته و در هر صورت مقاومت را به میزان قابل توجهی افزایش می‌دهد. پایه های سازه های دریایی و اسکله ها نیز شامل چنین مشکلاتی بوده و به سادگی با تکنولوژی FRP قابل ترمیم و ارتقاء عملکرد می‌باشند.








الیاف کربن 

پلیمرهای مسلح شده با الیاف کربن یا در اصطلاح متداول تر الیاف کربن CFRP، موادی با مدول الاستیسیته و مقاومت کششی بسیار بالا می‌باشند. خواص مكانیكی بالا، چگال پایین، مقاومت در برابر اصطكاك و دمای بالا، دوام و عمر طولانی در برابر مواد شیمیایی و نفوذ ناپذیری در برابر اشعه X از بارزترین خصوصیات الیاف FRP كربن بشمار می­رود. الیاف Wrap FRP در مدول ها و مقاومتهای مختلف و با بافتهای الیاف یک جهته و دو جهته توسط شرکت افزیر برای صنایع مختلف هوا فضا، خودرو، دریایی، نفت و گاز و پتروشیمی، ساختمانی و مقاوم سازی انواع سازه های بتنی عرضه می گردند. با توجه به نیاز صنعتهای مختلف کشور ایران، الیاف کربن در طیف گسترده ای از انواع فیبر از 3K تا 50K و با وزنهای مختلف و عرضهای مختلف ارائه می‌شوند.






الیاف شیشه 

پلیمرهای مسلح شده با فیبرهای شیشه glass fiber یا در اصطلاح متداول تر الیاف شیشه GFRP wrap، مصالح ساخته شده از تارهای با جنس شیشه به ضخامت حدود 10 میکرون هستند.  مقاومت کششی و شیمیایی بسیار بالا باعث شده تا استفاده از این الیاف در ساخت قطعات صنایع هوا فضا، خودرو، دریایی و ساختمانی، تجهیزات مبلمان و تجهیزات ورزشی، روز به روز بیشتر شود. الیاف FRP شیشه متداولترین محصول برای مقاوم سازی، تقویت و بهسازی انواع سازه ها در صنعت ساختمان بوده، همچنین این مصالح برای حفاظت اجزای مختلف در محیطهای خورنده و شیمیایی FRP lining (ایزوله کردن لوله های فلزی و حفاظت شیمیایی در محیطهای خورنده با PH خیلی بالا یا کم)، نیز کاربرد گسترده ای دارند.

الیاف کامپوزیت شیشه در بافتهای یک جهته، دو جهته حصیری و چند جهته در وزنها و مقاومتهای مختلف توسط شرکت افزیر ارائه می­شوند. پلیمرهای کامپوزیتی شیشه با بسیاری از سیستم های رزینی نظیر پلی استر اشباع شده، وینیل استر، رزین های فنولیک و رزین اپوکسی سازگاری دارد و  سیستم کامپوزیتی بسیار مناسبی را شکل می‌دهند.


frp یا الیافهای تقویتی

بسیاری از سازه‌های بتن آرمة موجود در دنیا در اثر تماس با سولفاتها، كلریدها و سایر عوامل خورنده، دچار آسیب‌های اساسی شده‌اند. این مساله هزینه‌های زیادی را برای تعمیر، بازسازی و یا تعویض سازه‌های آسیب ‌دیده در سراسر دنیا موجب شده است. این مساله و عواقب آن گاهی نه تنها به عنوان یك مسالة مهندسی، بلكه به عنوان یك مسالة اجتماعی جدی تلقی شده است . تعمیر و جایگزینی سازه‌های بتنی آسیب‌دیده میلیون‌ها دلار خسارت در دنیا به دنبال داشته است. در امریكا، بیش از 40 درصد پلها در شاهراهها نیاز به تعویض و یا بازسازی دارند . هزینة بازسازی و یا تعمیر سازه‌های پاركینگ در كانادا، 4 تا 6 میلیارد دلار كانادا تخمین زده شده است . هزینة تعمیر پلهای شاهراهها در امریكا در حدود 50 میلیارد دلار برآورد شده است؛ در حالیكه برای بازسازی كلیة سازه‌های بتن آرمة آسیب‌دیده در امریكا در اثر مسالة خوردگی میلگردها، پیش‌بینی شده كه به بودجة نجومی 1 تا 3 تریلیون دلار نیاز است! در مناطق مختلف ایران نیز اثرات مخرب كلریدها و سولفاتهای مهاجم در محیط های دریایی و ساحلی بر پایه‌های پل، آبگیرها، سدها و كانال‌های بتن آرمه که باعث ایجاد خوردگی فولاد بتن میشود سبب اعمال هزینه های سنگین جهت مرمت ویا بازسازی ابنیه ها خواهد بود.

حال اگر بخواهیم تمامی این ابنیه ها را از نو بسازیم متحمل هزینه های گزافی خواهیم گشت فلذا با اعمال تمهیداتی جهت مرمت و ترمیم سازه ها می توان هزینه ها را پایین آورد.
تكنیك‌هایی چند، جهت جلوگیری از خوردگی قطعات فولادی الحاقی به سازه و نیز فولاد در بتن مسلح توسعه داده شده و مورد استفاده قرار گرفته است كه از بین آنها می‌توان به:
پوشش اپوكسی بر قطعات فولادی ومیلگردها، تزریق پلیمر به سطوح بتنی و حفاظت كاتدیك میلگردها اشاره نمود. با این وجود هر یك از این تكنیك‌ها فقط تا حدودی موفق بوده است محققان امروزه به جانشین كردن قطعات فولادی و میلگردهای فولای با مصالح جدید مقاوم در مقابل خوردگی، معطوف گردیده اند.

مواد كامپوزیتی (Fiber Reinforced Polymers/Plastics) FRP موادی بسیار مقاوم در مقابل محیط‌های خورنده همچون محیط‌های نمكی و قلیایی هستند به همین دلیل امروزه كامپوزیتهای FRP، موضوع تحقیقات توسعه‌ای وسیعی به عنوان جانشین قطعات و میلگردهای فولادی و كابلهای پیش‌تنیدگی شده‌اند. چنین تحقیقاتی به خصوص برای سازه‌های در مجاورت آب و بالاخص در محیط‌های دریایی و ساحلی، به شدت مورد توجه قرار گرفته‌اند.

آشنائی با FRP:

FRP (Fiber Reinforcement polymer ) نوعی ماده کامپوزیت متشکل از دو بخش فیبر یا الیاف تقویتی است که به وسیله یک ماتریس رزین از جنس پلیمر احاطه شده است. که به دو شکل ورق های FRP و میلگردهای FRP وجود دارد.

نقش اصلی ماتریس عبارت است از :

1-انتقال برش از فیبر تقویتی به ماده مجاور

2- محافظت از فیبر در شرایط محیطی

3- جلوگیری از خسارات مکانیکی وارد بر الیاف

4- کنترل کمانش موضعی الیاف تحت فشار

به طور کلیFRP ها بر اساس فیبر تشکیل دهنده ی آنها به چند دسته زیر تقسیم می شوند:

1- CFRP با الیافی از جنس کربن

2-GFRP با الیافی از جنس شیشه

3- AFRP با الیافی از جنس آرامید

مزایای استفاده از FRP:

1 - وزن کم (چگالی آن در حدود 20% فولاد است .)

2 - مقاومت در برابر خورندگی

3 - نفوذناپذیری مغناطیسی

4 - امکان تقویت به صورت خارجی

5- حمل و نقل آسان وسرعت اجرای بالابه دلیل وزن کم

مواد FRP از دو جزء اساسی تشكیل می‌شوند؛ فایبر (الیاف) و رزین (مادة چسباننده). فایبرها كه اصولاً الاستیك، ترد و بسیار مقاوم هستند، جزء اصلی باربر در مادة FRP محسوب می‌شوند. بسته به نوع فایبر، قطر آن در محدودة5 تا 25 میكرون می‌باشد.

رزین اصولاً به عنوان یك محیط چسباننده عمل می‌كند، كه فایبرها را در كنار یكدیگر نگاه می‌دارد. با این وجود، ماتریس‌های با مقاومت كم به صورت چشمگیر بر خواص مكانیكی كامپوزیت نظیر مدول الاستیسیته و مقاومت نهایی آن اثر نمی‌گذارند. ماتریس (رزین) را می‌توان از مخلوط‌های ترموست و یا ترموپلاستیك انتخاب كرد. ماتریس‌های ترموست با اعمال حرارت سخت شده و دیگر به حالت مایع یا روان در نمی‌آیند؛ در حالیكه رزین‌های ترموپلاستیك را می‌توان با اعمال حرارت، مایع نموده و با اعمال برودت به حالت جامد درآورد. به عنوان رزین‌های ترموست می‌توان از پلی‌استر، وینیل‌استر و اپوكسی، و به عنوان رزین‌های ترموپلاستیك از پلی‌وینیل كلرید (PVC)، پلی‌اتیلن و پلی پروپیلن (PP)، نام برد .
فایبر ممكن است از شیشه، كربن، آرامید و یا وینیلون باشد كه در اینصورت محصولات كامپوزیت مربوطه به ترتیب به نامهای GFRP، CFRP،AFRP و VFRP شناخته می‌شود. در ادامه شرح مختصری از بعضی از فایبرهای متداول ارائه خواهد شد.

1-الیاف شیشه:

فایبرهای شیشه در چهار دسته طبقه‌بندی می‌شوند :

1-E-Glass: متداول ترین الیاف شیشه در بازار با محتوای قلیایی كم، كه در صنعت ساختمان به كار می‌رود، (با مدول الاستیسیتة، مقاومت نهایی ، و كرنش نهایی ).

2 – Z-Glass: با مقاومت بالا در مقابل حملة قلیائیها، كه در تولید بتن الیافی به كار گرفته می‌شود.

3 – A-Glass: با مقادیر زیاد قلیایی كه امروزه تقریباً از رده خارج شده است.

4 – S-Glass: كه در تكنولوژی هوا-فضا و تحقیقات فضایی به كار گرفته می‌شود و مقاومت و مدول الاستیسیتة بسیار بالایی دارد، ( و).

2- الیاف كربن:

الیاف كربن در دو دسته طبقه‌بندی می‌شوند:

1- الیاف كربنی از نوع PAN در سه نوع مختلف هستند. تیپ I كه تردترین آنها با بالاترین مدول الاستیسیته محسوب می‌شود. ( و). تیپ II كه مقاوم‌ترین الیاف كربن است ( و)؛ و نهایتاً تیپ III كه نرمترین نوع الیاف كربنی با مقاومتی بین تیپ ‌I و IIمی‌باشد.

2 – الیاف با اساس قیری(Pitch-based) كه اساساً از تقطیر زغال سنگ بدست می‌آیند. این الیاف از الیافPAN ارزان‌تر بوده و مقاومت و مدول الاستیسیتة كمتری نسبت به آنها دارند ( و).
لازم به ذكر است كه الیاف كربن مقاومت بسیار خوبی در مقابل محیط های قلیایی و اسیدی داشته و در شرایط سخت محیطی از نظر شیمیایی كاملاً پایدار هستند.

3- الیاف آرامید:

آرامید،یك كلمة اختصاری از آروماتیك پلی‌آمید است [12].آرامیداساساً الیاف ساختة دست ‌بشر است كه برای اولین بار توسط شركت DuPont در آلمان تحت نام كولار (Kevlar) تولید شد.‌‌چهار‌نوع كولار وجود دارد كه از بین آنها كولار 49 برای مسلح كردن بتن، طراحی و تولید شده و مشخصات مكانیكی آن بدین قرار است: و.

انواع محصولات FRP:

1- میله های كامپوزیتی:

میله‌های ساخته شده از كامپوزیت‌های FRPهستند كه جانشین میلگردهای فولادی در بتن آرمه خواهند شد. كاربرد این میله‌ها به دلیل عدم خوردگی، مساله كربناسیون و كلراسیون را كه از جمله مهم‌ترین عوامل مخرب در سازه‌های بتن آرمه هستند، به كلی حل خواهند نمود.

2- شبكه‌های كامپوزیتی:

شبكه‌های كامپوزیتی FRP (Grids) محصولاتی هستند كه از برخورد میله‌های FRP در دو جهت و یا در سه جهت ایجاد می‌شوند. نمونه‌ای از این محصول، شبكة كامپوزیتی NEFMAC است كه از فایبرهای كربن، شیشه یا آرامید و رزین وینیل استر تولید می‌شود و منجمله برای مسلح كردن بتن مناسب است.

3- كابل:

طناب و تاندن‌های پیش‌تنیدگی: محصولاتی شبیه میله‌های كامپوزیتی FRP، ولی به صورت انعطاف‌پذیر هستند، كه در سازه‌های كابلی و بتن پیش تنیده در محیط‌های دریایی و خورنده كاربرد دارند. این محصولات در اجزاء پیش‌تنیدة در مجاورت آب نیز بكار گرفته می‌شوند.

4- ورقه‌های كامپوزیتی:

ورقه‌های كامپوزیتی Sheets) FRP)، ورقه‌های با ضخامت چند میلیمتر از جنس FRP هستند. این ورقه‌ها با چسب‌های مستحكم و مناسب به سطح بتن چسبانده می‌شوند. ورقه‌های FRP پوشش مناسبی جهت ایزوله كردن سازه‌های آبی از محیط خورندة مجاور هستند. همچنین از ورقه‌های كامپوزیتی FRP جهت تعمیر و تقویت سازه‌های آسیب دیده (ناشی از زلزله و یا ناشی از خوردگی آبهای یون‌دار) استفاده می‌شوند.

5- پروفیل‌های ساختمانی:

مصالح FRP همچنین در شكل پروفیل‌های ساختمانی به صورت I شكل، T شكل، نبشی و ناودانی تولید می‌شوند. چنین محصولاتی می‌توانند جایگزین بسیار مناسبی برای قطعات و سازه‌های فولادی در مجاورت آب تلقی شوند.

v مشخصات اساسی محصولات كامپوزیتی FRP:

1- مقاومت در مقابل خوردگی:

بدون شك برجسته ترین و اساسی ترین خاصیت محصولات كامپوزیتیFRP مقاومت آنها در مقابل خوردگی است. در حقیقت این خاصیت مادهFRP تنها دلیل نامزد كردن آنها به عنوان یك گزینة جانشین برای اجزاء فولادی و نیز میلگردهای فولادی است. به خصوص در سازه‌های بندری، ساحلی و دریایی،مقاومت خوب كامپوزیت FRP در مقابل خوردگی، سودمندترین مشخصة میلگردهای FRP است.

2- مقاومت:

مصالح FRPمعمولاً مقاومت كششی بسیار بالایی دارند، كه از مقاومت كششیفولاد به مراتب بیشتر است. مقاومت كششی بالای میلگردهای FRP كاربرد آنها را برای سازه‌های بتن آرمه، خصوصاً برای سازه‌های پیش‌تنیده بسیار مناسب نموده است. مقاومت كششی مصالح FRP اساساً به مقاومت كششی، نسبت حجمی، اندازه و سطح مقطع فایبرهای بكار رفته در آنها بستگی دارد. مقاومت كششی محصولات FRP برای میله‌های با الیاف كربن 1100 تا MPa2200، برای میله‌های با الیاف شیشه 900 تا MPa1100، و برای میله‌های با الیاف آرامید 1350 تا MPa 1650 گزارش شده است . با این وجود، برای بعضی از این محصولات، حتی مقاومت‌های بالاتر از MPa 3000 نیز گزارش شده است. توجه شود كه بطور كلی مقاومت فشاری میله‌های كامپوزیتی FRP از مقاومت كششی آنها كمتر است؛ به عنوان نمونه مقاومت فشاری محصولات ISOROD برابر MPa 600 و مقاومت كششی آنها MPa700 است.

3- مدول الاستیسیته:

مدول الاستیسیتة محصولات FRP اكثراً در محدودة قابل قبولی قرار دارد؛ اگر چه اصولاً كمتر از مدول الاستیسیتة فولاد است. مدول الاستیسیتة میله‌های كامپوزیتی FRP ساخته شده از الیاف كربن، شیشه و آرامیدبه ترتیب در محدوده 100 تا GPa 150، GPa 45 و GPa 60 گزارش شده است.

4- وزن مخصوص:

وزن مخصوص محصولات كامپوزیتی FRP به مراتب كمتر از وزن مخصوص فولاد است؛ به عنوان نمونه وزن مخصوص كامپوزیتهای CFRP یك سوم وزن مخصوص فولاد است. نسبت بالای مقاومت به وزن در كامپوزیتهایFRP از مزایای عمدة آنها در كاربردشان به عنوان مسلح كنندة بتن محسوب می‌شود.

5- عایق بودن:

مصالح FRP خاصیت عایق بودن بسیار عالی دارند. به بیان دیگر، این مواد از نظر مغناطیسی و الكتریكی خنثی بوده و عایق محسوب می‌شوند. بنابراین استفاده از بتن مسلح به میله‌های FRP در قسمتهایی از بیمارستان كه نسبت به امواج مغناطیسی حساس هستند، و در مسیرهای هدایتی قطارهای شناور مغناطیسی و همچنین در باند فرودگاهها و مراكز رادار بسیار سودمند خواهد بود.

6- خستگی :

خستگی خاصیتی است كه در بسیاری از مصالح ساختمانی وجود داشته و در نظر گرفتن آن ممكن است به شكست غیر منتظره، خصوصاً در اجزایی كه در معرض سطوح بالایی از بارها و تنش‌های تناوبی قرار دارند، منجر شود. در مقایسه با فولاد، رفتار مصالح FRP در پدیدة خستگی بسیار عالی است؛ به عنوان نمونه برای تنش‌های كمتر از یك دوم مقاومت نهایی، مواد FRP در اثر خستگی گسیخته نمی‌شوند.

7- خزش :

پدیدة گسیختگی ناشی از خزش اساساً در تمام مصالح ساختمانی وجود دارد؛ با این وجود چنانچه كرنش ناشی از خزش جزء كوچكی از كرنش الاستیك باشد،  عملاً مشكلی بوجود نمی‌آید. در مجموع، رفتار خزشی كامپوزیت‌ها بسیار خوب است؛ به بیان دیگر، اكثر كامپوزیتهای در دسترس، دچار خزش نمی شوند.

8 – چسبندگی با بتن :

خصوصیت چسبندگی، برای هر ماده‌ای كه به عنوان مسلح كنندة بتن بكار رود، بسیار مهم تلقی می شود. در مورد میله های كامپوزیتی FRP، اگر چه در بررسی بسیار اولیه، مقاومت چسبندگی ضعیفی برای كامپوزیت‌های از الیاف شیشه گزارش شده بود، تحقیقات اخیر در دنیا مقاومت چسبندگی خوب و قابل قبولی را برای میله‌های كامپوزیتی FRP گزارش می كند.

9- خم شدن:

چنانچه كامپوزیتهای FRP در بتن مسلح بكار گرفته شوند، به جهت مهار میلگردهای طولی، میلگردهای عرضی و تنگ‌ها، لازم است در انتها خم شوند. با این وجود عمل خم كردن میله‌های FRP بسیار دشوارتر از خم كردن میلگردهای فولادی بوده و در حال حاضر برای مصالح موجود FRP، نمی‌توان خم كردن را در كارگاه انجام داد. اگر چه در صورت لزوم، می‌توان خم میله‌های كامپوزیتی FRP را با سفارش آن به تولید كننده در كارگاه انجام داد.

10- انبساط حرارتی:

خصوصیات انبساط حرارتی فولاد و بتن بسیار به هم نزدیك هستند؛ ضریب انبساط حرارتی این دو ماده به ترتیب: و می‌باشد. ضریب انبساط حرارتی میله‌های FRP اغلب از بتن متفاوت است. به طور خلاصه ضریب انبساط حرارتی مصالح FRP با الیاف كربن و شیشه به ترتیب برابر با و می‌باشد. بدترین حالت مربوط به آرامید است كه ضریب انبساط حرارتی آن منفی بوده و برابر با می‌باشد.

vاستفاده از مواد FRP به عنوان مسلح‌ کنندة خارجی در سازه‌ها


به دنبال فرسوده شدن سازه‌های زیر‌بنایی و نیاز به تقویت سازه‌ها برای برآورده کردن شرایط سخت‌گیرانة طراحی، طی دو دهه اخیر تأکید فراوانی بر روی تعمیر و مقاوم‌ سازی سازه‌ها در سراسر جهان، صورت گرفته است. از طرفی، بهسازی لرزه‌ای سازه‌ها به‌خصوص در مناطق زلزله‌ خیز، اهمیت فراوانی یافته است. در این میان تکنیک‌های استفاده از مواد مرکب FRPبه‌عنوان مسلح‌ کنندة خارجی به دلیل خصوصیات منحصر به فرد آن، از جمله مقاومت بالا، سبکی، مقاومت شیمیایی و سهولت اجرا، در مقاوم ‌سازی و احیاء سازه‌ها اهمیت ویژه‌ای پیدا کرده‌اند. از طرف دیگر، این تکنیک‌ها به دلیل اجرای سریع و هزینه‌های کم جذابیت ویژه‌ای یافته‌اند.
مواد مرکب FRP در ابتدا به‌عنوان مواد مقاوم ‌کننده خمشی برای پل‌های بتن‌آرمه و همچنین به‌عنوان محصور ‌کننده در ستون‌های بتن آرمه مورد استفاده قرار می‌گرفتند؛ اما به دنبال تلاش‌های تحقیقاتی اولیه، از اواسط دهه1980 توسعة بسیار زیادی در زمینه استفاده از مواد FRP در مقاوم‌‌سازی سازه‌های مختلف مشاهده می‌شود؛ بطوری‌که دامنة کاربردهای آن به سازه‌هایی با مصالح بنایی، چوبی و حتی فلزی نیز گسترش یافته است. تعداد موارد کاربرد مواد FRP در مقاوم ‌سازی، تعمیر و یا بهسازی سازه‌ها از چند مورد در10 سال پیش، به هزاران مورد در حال حاضر رسیده است. اجزاء سازه‌ای مختلفی شامل تیرها، دال‌ها، ستون‌ها، دیوارهای برشی، اتصالات، دودکش‌ها، طاق‌ها، گنبدها و خرپاها تا کنون توسط مواد FRP مقاوم شده‌اند.

مقاوم ‌سازی سازه‌های بتن آرمه با مواد FRP:

مواد مرکب FRP، دامنة وسیعی از کاربردها را برای مقاوم ‌سازی سازه‌های بتن‌آرمه در مواردی که تکنیک‌های مرسوم مقاوم‌ سازی ممکن است مسئله‌ ساز باشند، به ‌خود اختصاص داده‌اند. برای نمونه، یکی از معمول‌ترین تکنیک‌ها برای بهسازی اجزاء بتن آرمه، استفاده از ورق‌های فولادی است که از بیرون به این اجزاء چسبانده می‌شود. این روش، روشی ساده، مقرون به صرفه و کارا است؛ اما از جهات زیر مسئله‌ ساز است:

1- زوال چسبندگی بین فولاد و بتن که از خوردگی فولاد ناشی میشود .

2- مشکلات ساخت صفحات فولادی سنگین در کارگاه ساختمان.

3- نیاز به نصب داربست

4- محدودیت طول در انتقال صفحات فولادی به کارگاه ساخت (در مورد مقاوم ‌سازی خمشی اجزاء بلند).

نوارها یا صفحات می‌توانند جایگزینی برای صفحات فولادی باشند. مواد FRP برخلاف فولاد، تحت تأثیر زوال الکتروشیمیایی قرار نمی‌گیرند و می‌توانند درمقابل خوردگی اسیدها، بازها و نمک‌ها و مواد مهاجم مشابه در دامنة وسیعی از دما مقاومت کنند. در نتیجه نیاز به سیستم‌های حفاظت از خوردگی نمی‌باشد وآماده‌کردن سطوح اعضاء قبل از چسباندن صفحات FRP و نگهداری از آن‌ها بعد از نصب، از صفحات فولادی آسان‌تر است.

علاوه بر این، الیاف مسلح‌کننده در FRP می‌توانند در موضع معین و در نسبت حجمی و جهت خاصی درون ماتریس قرارگیرند تا بیش‌ترین کارایی به‌دست آید. مواد حاصله تنها با درصدی از وزن فولاد، مقاومت و سختی بالایی در جهت الیاف دارند. آن‌ها همچنین حمل و نقل آسان‌تری داشته، نیازمند داربست کمتری برای نصب می‌باشند، و می‌توانند برای مکان‌هایی که دارای دسترسی محدود هستند، مورد استفاده قرار گیرند؛ و پس از نصب، بار اضافی قابل‌توجهی را به سازه تحمیل نمی‌کنند.

روش مرسوم دیگر در مقاوم ‌سازی اعضای بتن‌آرمه، استفاده از پوشش‌هایی از نوع بتن‌آرمه، بتن پاشیدنی و یا فولاد می‌باشد. این روش تا جایی که مربوط به مقاومت، سختی و شکل ‌پذیری می‌شود، کاملا مؤثر است؛ اما باعث افزایش ابعاد مقاطع و بار مرده سازه می‌شود. همچنین این شیوه نیازمند عملیات پر دردسر و تخلیه ساكنین است و به صورت بالقوه باعث افزایش نامطلوب سختی اعضای بتن‌آرمه می شود. به‌عنوان یک جایگزین، صفحات FRP می‌توانند به دور اجزاء بتن‌آرمه پیچیده شوند و افزایش قابل توجه مقاومت و شکل ‌پذیری را به دنبال داشته باشند؛ بدون آن‌که تغییر زیادی در سختی ایجاد نمایند. یک نکتة مهم در ارتباط با مقاوم ‌سازی اعضا با استفادة خارجی از FRP آن است که باید درجة مقاوم‌ سازی (نسبت ظرفیت نهایی عضو مقاوم‌شده به ظرفیت نهایی عضو مقاوم ‌نشده) را محدود کنیم تا حداقل سطح ایمنی در حوادثی مانند آتش ‌سوزی که منجر به از دست رفتن کارایی FRP می‌شوند، حفظ گردد.

امروزه مواد كامپوزیتی FRP به وفور جهت تقویت خمشی و برشی تیرهای بتن آرمه به كار می‌روند كه نمونه‌ای از آن در شكل نشان داده شده است. در این شكل ملاحظه می‌شود كه با متصل كردن صفحات FRP به وجه پایینی تیر ظرفیت خمشی مثبت و با متصل كردن آن به وجه بالایی تیر ظرفیت خمشی منفی حاصل می‌شود. هم‌چنین می‌توان با اتصال صفحات FRP به دو وجه كناری تیر، ظرفیت برشی مناسبی فراهم نمود.

در شکست تیرهای بتن‌آرمة تقویت شده با صفحات FRP مکانیزم‌های مختلف شکست، ازجمله گسیختگی صفحات FRP، خرد شدگی بتن، شکست برشی بتن و ترک ‌خوردگی در محل اتصال چسب با بتن، گزارش شده است. همچنین نشان داده شده است که نوع FRP، ضخامت و طول آن باعث ایجاد انواع مختلفی از شکست نرم یا ترد می‌شود. بخصوص خواص مکانیکی ناحیة اتصال FRP و بتن از اهمیت خاصی برخوردار است. در این میان جدا شدن صفحات FRP از بتن مسالة كاملا حائز اهمیت است و امروزه توجه زیادی را در دنیا به خود جلب می‌نماید. در این ارتباط به نظر می‌رسد كه استفاده از تقویت‌کننده‌های خارجی حتی به میزان کم، می‌تواند ایمنی قابل ملاحظه‌ای در برابر جدا شدن صفحات FRP از بتن، و نیز شکست‌های برشی ترد فراهم آورد.
از طرفی مواد كامپوزیتی FRP به وفور جهت تقویت خمشی و فشاری و نیز افزایش شكل پذیری ستون‌ها مورد استفاده قرار می‌گیرند. در همین ارتباط محصور شدگی بتن مهم‌ترین خصوصیتی است كه می توان آن را با چسباندن این مواد در اطراف ستون‌ها فراهم نمود. از طرفی استفاده از مواد كامپوزیتی FRP برای افزایش شكل پذیری اتصالات و رفتار مناسب‌تر آن در زلزله نیز بسیار مطلوب خواهد بود.

میلگرد های کاپوزیتی یا FRP چیست ؟

به روش پالتروژن ساخته ميشوند. در اين روش دستهاي از الياف پس از آغشتهشدن با رزين پس از عبور از يك قالب در كنار هم قرار گرفته و يك پروفيل داراي مقطع ثابت را به وجود ميآورند. از عمده ترين مزاياي روش پالتروژن چندمنظوره بودن آن و كاربردهاي گوناگون آن در صنايع مختلف است. به عبارتي صرفاً با تغيير قالب دستگاه ميتوان علاوه بر محصولاتي كه در صنعت ساختمان كاربرد دارد، همانند انواع آرماتورها، محصولات گوناگون ديگري در حوزههاي مختلف از جمله تسمههاي ماشين نساجي، ريلها، محافظ اتوبانها، چارچوب پنجرهها و درها، تيرهاي با مقطع I شكل، نبشيها و غيره توليد نمود. عمر محصولات پالتروژني بسيار بالاست و سرعت توليد يك محصول پالتروژني نيز نسبتاً زياد است. از نظر قيمت نيز با وجود اينكه يك تير پالتروژني قيمت ظاهري بيشتري نسبت به نمونة مشابه آهني دارد ليكن مقاومت خوب آن در مصارف خاص ضدخوردگي و زلزله و عمر بالاي آن ميتواند توجيهگر قيمت اولية بالاي آن باشد. در مصارف عمومي مانند ساخت سازهها اگر نياز به مقاومت در برابر خوردگي و زلزله وجود داشته باشد، استفاده از تيرهاي پالتروژني ميتواند توجيه اقتصادي نيز داشته باشد.

چرا به جای میلگرد های فلزی از FRP استفاده کنیم؟

دليل عمدة استفادة از ميلگردهاي FRP در داخل بتن، جلوگيري از پديدة خوردگي و افزايش ميرايي ارتعاشات ايجاد شده در سازه در برابر ارتعاش ميباشد. هر چند كه استفاده از ميلگردهاي FRP به جاي نمونههاي فلزي سبب كاهش وزن بنا نيز خواهد شد، اما در استفاده از اين ميلگردها، مساله كاهش وزن اهميت ناچيزي نسبت به دو مورد بيانشده دارد. دليل بالا بودن ضريب ميرايي كامپوزيتها، خواص غيركشسان آنهاست كه انرژي جذب شده را ميرا ميكنند. در حالي كه مواد فلزي حالت كشسان داشته و انرژي جذب شده را ميرا نمينمايند. بنابراين مواد كامپوزيتي در برابر ارتعاشات زلزله عملكرد بهتري خواهند داشت و بهترين گزينه جهت مقاومت سازه در برابر لرزهها خواهند بود.


بكارگيري ميلگردهاي FRP به جاي فلزي، بهطور قابل ملاحظهاي از زيانهاي ناشي از بروز خوردگي جلوگيري ميكند. ظهور تخريب ناشي از پديدة خوردگي در بتن مسلحشده با ميلگرد فلزي بدين گونه است كه نخست ميلههاي فلزي داخل بتن دچار زنگزدگي شده و اكسيد ميشوند. سپس اين اكسيدها به سمت سطح بيروني بتن شروع به مهاجرت كرده و با انتشار در داخل بتن باعث از بين رفتن آن ميشوند. بدين ترتيب با خوردهشدن دو جزء فلزي و بتني سازه، زمينة تخريب كامل سازة بتني فراهم ميگردد. روشهاي سنتي گذشته مانند چسباندن صفحات فلزي بر روي سازه يا اضافه كردن ضخامت بتن جهت مقابله با پديدة خوردگي ضمن آنكه مشكل خوردگي فلز را مرتفع نخواهد نمود، سبب افزايش وزن سازه و آسيبپذيرترشدن آن در برابر زلزله نيز خواهد شد. جهت جلوگيري از اين امر ميتوان با تقويت سطح خارجي سازة بتني توسط مواد مركب و استفاده از ميلگردهاي FRP در داخل بتن، هم مشكل خوردگي فلز داخل سازه را حل نمود و هم جلوي مختل شدن كارايي سازه در صورت خورده شدن بتن را گرفت كه اين بهترين روش مقابله با پديدة خوردگي در يك سازة بتني ميباشد.

كشور ما نياز بسيار گستردهاي به استفاده از كامپوزيتها در قالب آرماتورهاي كامپوزيتي دارد. هماكنون بسياري از سازههاي بنا شده در محيطهاي خورندة مناطق مختلف كشور همچون پلهاي درياچة اروميه و يا ساختمانهاي جنوب كشور دچار معضل خوردگي هستند كه استفاده از كامپوزيتها ميتواند پاسخگوي مشكل اين قبيل سازهها باشد.


کاربرد کامپوزیت‌های FRP در سازه‌های بتن آرمه

خلاصه

 خوردگی قطعات فولادی در سازه‌های مجاور آب و نیز خوردگی میلگردهای فولادی در سازه‌های بتن آرمه ای که در معرض محیط‌های خورندة کلروری و کربناتی قرار دارند، یک مسالة بسیار اساسی تلقی می‌شود. در محیط‌های دریایی و مرطوب وقتی که یک سازة بتن‌آرمة معمولی به صورت دراز مدت در معرض عناصر خورنده نظیر نمک‌ها، اسید‌ها و کلرورها قرار گیرد، میلگردها به دلیل آسیب دیدگی و خوردگی، قسمتی از ظرفیت خود را از دست خواهند داد. به علاوه فولادهای زنگ زده بر پوستة بیرونی بتن فشار می‌آورد که به خرد شدن و ریختن آن منتهی می‌شود. تعمیر و جایگزینی اجزاء فولادی آسیب دیده و نیز سازة بتن آرمه‌ای که به دلیل خوردگی میلگردها آسیب دیده است، میلیون‌ها دلار خسارت در سراسر دنیا به بار آورده است. به همین دلیل سعی شده که تدابیر ویژه‌ای جهت جلوگیری از خوردگی اجزاء فولادی و میلگرد‌های فولادی در بتن اتخاذ گردد که از جمله می‌توان به حفاظت کاتدیک اشاره نمود. با این وجود برای حذف کامل این مساله، توجه ویژه ای به جانشینی کامل اجزاء و میلگردهای فولادی با یک مادة جدید مقاوم در مقابل خوردگی معطوف گردیده است.  از آن‌جا  که  کامپوزیت‌های FRP (Fiber Reinforced Polymers/Plastics) بشدت در مقابل محیط‌های قلیایی و نمکی مقاوم هستند که در دو دهة اخیر موضوع تحقیقات گسترده‌ای جهت جایگزینی کامل با قطعات و میلگردهای فولادی بوده‌اند. چنین جایگزینی بخصوص در محیط‌های خورنده نظیر محیط‌های دریایی و ساحلی بسیار مناسب به نظر می‌رسد. در این مقاله مروری بر خواص، مزایا و معایب مصالح کامپوزیتی FRP  صورت گرفته و قابلیبت کاربرد آنها به عنوان جانشین کامل فولاد در سازه‌های مجاور آب و بخصوص در سازة بتن آرمه، به جهت حصول یک سازة کاملاً مقاوم در مقابل خوردگی، مورد بحث قرار خواهد گرفت.

1 مقدمه

بسیاری از سازه‌های بتن آرمة موجود در دنیا در اثر تماس با سولفاتها، کلریدها و سایر عوامل خورنده، دچار آسیب‌های اساسی شده‌اند. این مساله هزینه‌های زیادی را برای تعمیر، بازسازی و یا تعویض سازه‌های آسیب ‌دیده در سراسر دنیا موجب شده است. این مساله و عواقب آن گاهی نه تنها به عنوان یک مسالة مهندسی، بلکه به عنوان یک مسالة اجتماعی جدی تلقی شده است ]1[. تعمیر و جایگزینی سازه‌های بتنی آسیب‌دیده میلیون‌ها دلار خسارت در دنیا به دنبال داشته است. در امریکا، بیش از 40 درصد پلها در شاهراهها نیاز به تعویض و یا بازسازی دارند ]2[. هزینة بازسازی و یا تعمیر سازه‌های پارکینگ در کانادا، 4 تا 6 میلیارد دلار کانادا تخمین زده شده است ]3[. هزینة تعمیر پلهای شاهراهها در امریکا در حدود 50 میلیارد دلار برآورد شده است؛ در حالیکه برای بازسازی کلیة سازه‌های بتن آرمة آسیب‌دیده در امریکا در اثر مسالة خوردگی میلگردها، پیش‌بینی شده که به بودجة نجومی 1 تا 3 تریلیون دلار نیاز است ]3[ !

از مواردی که سازه‌های بتن آرمه به صورت سنتی مورد استفاده قرار می‌گرفته، کاربرد آن در مجاورت آب و نیز در محیط‌های دریایی بوده است. تاریخچه کاربرد بتن آرمه و بتن پیش‌تنیده در کارهای دریایی به سال 1896 بر می‌گردد ]4[. دلیل عمدة این مساله، خواص ذاتی بتن و منجمله مقاومت خوب و سهولت در قابلیت کاربرد آن چه در بتن‌ریزی در جا و چه در بتن پیش‌تنیده بوده است. با این وجود شرایط آب و هوایی و محیطی خشن و خورندة اطراف سازه‌های ساحلی و دریایی همواره به عنوان یک تهدید جدی برای اعضاء بتن آرمه محسوب گردیده است. در محیط‌های ساحلی و دریایی، خاک، آب زیرزمینی و هوا، اکثراً حاوی مقادیر زیادی از نمکها شامل ترکیبات سولفور و کلرید هستند.

در یک محیط دریایی نظیر خلیج فارس، شرایط جغرافیایی و آب و هوایی نامناسب، که بسیاری از عوامل خورنده را به دنبال دارد، با درجة حرارت‌های بالا و نیز رطوبت‌های بالا همراه شده که نتیجتاً خوردگی در فولادهای به کار رفته در بتن آرمه کاملاً تشدید می‌شود. در مناطق ساحلی خلیج فارس، در تابستان درجة حرارت از 20 تا 50 درجة سانتیگراد تغییر می‌کند، در حالیکه گاه اختلاف دمای شب و روز، بیش از 30 درجة سانتیگراد متغیر است. این در حالی است که رطوبت نسبی اغلب بالای 60 درصد بوده و بعضاً نزدیک به 100 درصد است. به علاوه هوای مجاور تمرکز بالایی از دی‌اکسید گوگرد و ذرات نمک دارد [5]. به همین جهت است که از منطقة دریایی خلیج فارس به عنوان یکی از مخرب‌ترین محیط‌ها برای بتن در دنیا یاد شده است [6]. در چنین شرایط، ترک‌ها و ریزترک‌های متعددی در اثر انقباض و نیز تغییرات حرارتی و رطوبتی ایجاد شده، که این مساله به نوبة خود، نفوذ کلریدها و سولفاتهای مهاجم را به داخل بتن تشدید کرده، و شرایط مستعدی برای خوردگی فولاد فراهم می‌آورد [7-9]. به همین جهت بسیاری از سازه‌‌های بتن مسلح در نواحی ساحلی ایران نظیر سواحل بندرعباس، در کمتر از 5 سال از نظر سازه‌ای غیر قابل استفاده گردیده‌اند.

نظیر این مساله برای بسیاری از سازه‌های در مجاورت آب، که در محیط دریایی و ساحلی قرار ندارند نیز وجود دارد. پایه‌های پل، آبگیرها، سدها و کانال‌های بتن آرمه نیز از این مورد مستثنی نبوده و اغلب به دلیل وجود یون سولفات و کلرید، از خوردگی فولاد رنج می‌برند.

2 راه حل مساله

تکنیک‌هایی چند، جهت جلوگیری از خوردگی قطعات فولادی الحاقی به سازه و نیز فولاد در بتن مسلح توسعه داده شده و مورد استفاده قرار گرفته است که از بین آنها می‌توان به پوشش اپوکسی بر قطعات فولادی و  میلگردها، تزریق پلیمر به سطوح بتنی و حفاظت کاتدیک میلگردها اشاره نمود. با این وجود هر یک از این تکنیک‌ها فقط تا حدودی موفق بوده است [10]. برای حذف کامل مساله، توجه محققین به جانشین کردن قطعات فولادی و میلگردهای فولای با مصالح جدید مقاوم در مقابل خوردگی، معطوف گردیده است.

مواد کامپوزیتی (Fiber Reinforced Polymers/Plastics) FRP  موادی بسیار مقاوم در مقابل محیط‌های خورنده همچون محیط‌های نمکی و قلیایی هستند. به همین دلیل امروزه کامپوزیتهای FRP، موضوع تحقیقات توسعه‌ای وسیعی به عنوان جانشین قطعات و میلگردهای فولادی و کابلهای پیش‌تنیدگی شده‌اند. چنین تحقیقاتی به خصوص برای سازه‌های در مجاورت آب و بالاخص در محیط‌های دریایی و ساحلی، به شدت مورد توجه قرار گرفته‌اند.

3 ساختار مصالح FRP

مواد FRP  از دو جزء اساسی تشکیل می‌شوند؛ فایبر (الیاف) و رزین (مادة چسباننده). فایبرها که  اصولاً الاستیک، ترد و بسیار مقاوم هستند، جزء اصلی باربر در مادة FRP محسوب می‌شوند. بسته به نوع فایبر، قطر آن در محدودة 5 تا 25 میکرون می‌باشد [11].

رزین اصولاً به عنوان یک محیط چسباننده عمل می‌کند، که فایبرها را در کنار یکدیگر نگاه می‌دارد. با این وجود، ماتریس‌های با مقاومت کم به صورت چشمگیر بر خواص مکانیکی کامپوزیت نظیر مدول الاستیسیته و مقاومت نهایی آن اثر نمی‌گذارند. ماتریس (رزین) را می‌توان از مخلوط‌های ترموست و یا ترموپلاستیک انتخاب کرد. ماتریس‌های ترموست با اعمال حرارت سخت شده و دیگر به حالت مایع یا روان در نمی‌آیند؛ در حالیکه رزین‌های ترموپلاستیک را می‌توان با اعمال حرارت، مایع نموده و با اعمال برودت به حالت جامد درآورد. به عنوان رزین‌های ترموست می‌توان از پلی‌استر، وینیل‌استر و اپوکسی، و به عنوان رزین‌های ترموپلاستیک از پلی‌وینیل کلرید (PVC)، پلی‌اتیلن و پلی پروپیلن (PP)، نام برد [3].

فایبر ممکن است از شیشه، کربن، آرامید و یا وینیلون باشد که در اینصورت محصولات کامپوزیت مربوطه به ترتیب به نامهای GFRP، CFRP،AFRP  و VFRP شناخته می‌شود. در ادامه شرح مختصری از بعضی از فایبرهای متداول ارائه خواهد شد.

7- دوام کامپوزیت‌های FRP

کامپوزیت‌های FRP شاخة جدیدی از مصالح محسوب می‌شوند که دوام آنها دلیل اصلی و اولیه برای کاربرد آنها در محدودة وسیعی از عناصر سازه‌ای شده است. به همین جهت است که از آنها نه تنها در صنعت ساختمان، بلکه در فضاپیما، بال هواپیما، درهای اتومبیل، مخازن محتوی گاز مایع، نردبان و حتی راکت تنیس نیز استفاده می‌شود. بنابراین از نقطه نظر مهندسی نه تنها مسالة مقاومت و سختی، بلکه مسالة دوام آنها تحت شرایط مورد انتظار، کاملاً  مهم جلوه می‌کند.

مکانیزم‌هایی که دوام کامپوزیت‌ها را کنترل می‌کنند عبارتند از :

1)  تغییرات شیمیایی یا فیزیکی ماتریس پلیمر

2)  از دست رفتن چسبندگی بین فایبر و ماتریس

3)  کاهش در مقاومت و سختی فایبر

محیط نقش کاملاً تعیین کننده‌ای در تغییر خواص پلیمرهای ماتریس کامپوزیت دارد. هر دوی ماتریس و فایبر ممکن است با رطوبت، درجه حرارت، نور خورشید و مشخصأ تشعشعات ماوراء بنفش (UV)، ازن و نیز حضور بعضی از مواد شیمیایی تجزیه کننده نظیر نمک‌ها و قلیایی‌ها تحت ثأثیر قرار گیرند. همچنین تغییرات تکراری دما ممکن است به صورت سیکل‌های یخ‌زدن و ذوب شدن، تغییراتی را در ماتریس و فایبر باعث گردد. از طرفی تحت شرایط بار‌گذاری مکانیکی، بارهای تکراری ممکن است باعث خستگی (Fatigue) شوند. همچنین بارهای وارده در طول زمان مشخص به صورت ثابت، ممکن است مسالة خزش (Creep) را به دنبال داشته باشند. مجموعه‌ای از تمام مسائل مطرح شده در بالا، دوام کامپوزیت‌های FRP را تحت تأثیر قرار می‌دهند.

7-1- پیر شدگی فیزیکی ماتریس پلیمر

نقش ماتریس پلیمر و تغییرات آن یکی از جنبه‌های مهمی است که در مسالة دوام کامپوزیت‌ها باید در نظر گرفته شود. نقش اولیة ماتریس در کامپوزیت انتقال تنش بین فایبرها، محافظت از سطح فایبر در مقابل سائیدگی مکانیکی و ایجاد مانعی در مقابل محیط نامناسب است. همچنین ماتریس نقش به سزائی در انتقال تنش برشی در صفحة کامپوزیت ایفا می‌کند. بنابر این چنانچه ماتریس پلیمر خواص خود را با زمان تغییر دهد، باید تحت توجه خاص قرار گیرد. برای کلیة پلیمرها کاملاً طبیعی است که تغییر فوق‌العاده آهسته‌ای در ساختار شیمیایی (مولکولی) خود داشته باشند. این تغییر با محیط و عمدتاً با درجه حرارت و رطوبت کنترل می‌شود. این پروسه تحت نام پیر‌شدگی (Aging) نامیده می‌شود. تأثیرات پیر شدگی در اکثر کامپوزیت‌های ترموست متداول، در مقایسه با کامپوزیت‌های ترموپلاستیک، خفیف‌تر است. در اثر پیر‌شدگی فیزیکی، بعضی از پلیمرها ممکن است سخت‌تر و ترد‌تر شوند؛ نتیجة این مساله تأثیر بر خواص غالب ماتریس و منجمله رفتار برشی کامپوزیت خواهد بود. با این وجود در اکثر موارد این تأثیرات بحرانی نیست؛ زیرا نهایتاً روند انتقال بار اصلی از طریق فایبر‌ها رخ داده و تأثیرات پیر‌شدگی بر فایبر‌ها فوق‌العاده جزئی است.

7-2- تأثیر رطوبت

بسیاری از کامپوزیت‌های با ماتریس پلیمری در مجاورت هوای مرطوب و یا محیط‌های مرطوب، با جذب سطحی سریع رطوبت و پخش آن، رطوبت را به خود می‌گیرند. معمولاً درصد رطوبت ابتدا با گذشت زمان افزایش یافته و نهایتاً پس از چندین روز تماس با محیط مرطوب، به نقطة اشباع (تعادل) می‌رسد. زمانی که طول می‌کشد تا کامپوزیت به نقطة اشباع برسد به ضخامت کامپوزیت و میزان رطوبت محیط بستگی دارد. خشک کردن کامپوزیت می‌تواند این روند را معکوس کند، اما ممکن است منجر به حصول کامل خواص اولیه نگردد. جذب آب به وسیلة کامپوزیت از قانون عمومی انتشار فیک (Fick’s Law) تبعیت کرده و با جذر زمان متناسب است. از طرفی سرعت دقیق جذب رطوبت به عواملی همچون میزان خلل و فرج، نوع فایبر، نوع رزین، جهت و ساختار فایبر، درجه حرارت، سطح تنش وارده، و حضور ریزترکها بستگی دارد. در ادامه تأثیر رطوبت را به صورت مجزا بر اجزاء کامپوزیت مورد بحث قرار می‌دهیم.

ب - تأثیر رطوبت بر فایبر‌ها

اعتقاد عمومی بر آن است که فایبر‌های شیشه چنانچه به صورت طولانی مدت در کنار آب قرار گیرند، آسیب می‌بینند. دلیل این مساله آن است که شیشه از سیلیکا ساخته شده که در آن اکسیدهای فلزات قلیایی منتشر شده‌اند. اکسیدهای فلزات قلیایی هم جاذب آب بوده و هم قابل هیدرولیز هستند. با این وجود، در اکثر موارد مصرف در مهندسی عمران، از E-glass و S-glass استفاده می‌شود که فقط مقادیر کمی از اکسیدهای فلزات قلیایی را داشته و بنابراین در مقابل خطرات ناشی از تماس با آب، مقاوم هستند. در هر حال کامپوزیت‌های ساخته شده از الیاف شیشه باید به خوبی ساخته شده باشند، بصورتیکه از نفوذ آب به مقدار زیاد جلوگیری ‌کنند؛ زیرا حضور آب در سطح الیاف شیشه انرژی سطحی آنها را کاهش می‌دهد که می‌تواند رشد ترک‌خوردگی را افزایش دهد. از طرفی الیاف آرامید نیز می‌توانند مقادیر قابل توجهی از آب را جذب کنند که منجر به باد کردن و تورم آنها می‌شود. با این وجود اکثر الیاف با پوششی محافظت می‌شوند، که پیوستگی خوب با ماتریس داشته و نیز حفاظت از جذب آب را به همراه دارد. لازم به ذکر است که تحقیقات متعدد، نشان می‌دهد که رطوبت هیچگونه تأثیرات سوء شناخته‌شده‌ای را بر الیاف کربن به دنبال ندارد [21].

ج- رفتار عمومی کامپوزیت‌های اشباع شده با آب

کامپوزیت‌های با ‌آب اشباع شده معمولاً کمی افزایش شکل‌پذیری (Ductility) در اثر نرم‌شدگی Softening)) ماتریس از خود نشان می‌دهند. این مساله را می‌توان یک جنبة سودمند از جذب آب در کامپوزیت‌های پلیمری بر‌شمرد. همچنین افت محدود مقاومت و مدول الاستیسیته می‌تواند در کامپوزیت‌های با آب اشباع شده اتفاق بیفتد. چنین تغییراتی معمولاً برگشت‌پذیر بوده و بنابر‌این به محض خشک شدن کامپوزیت‌، ممکن است اثر خواص از دست رفته مجدداً جبران شود.

شایان توجه است که افزایش فشار هیدرواستاتیک (مثلاً در مواردی که کامپوزیت‌ها در مصارف زیر آب و یا در کف دریا به کار می‌روند)، لزوماً به جذب آب بیشتر توسط کامپوزیت و افت خواص مکانیکی آن منجر نمی‌شوند. بدین ترتیب انتظار می‌رود که اکثر سازه‌های پلیمری زیر‌ آب، دوام بالایی داشته باشند.  در حقیقت، تحت فشار هیدرواستاتیک، جذب آب به دلیل بسته شدن ریز‌ترک‌ها و ضایعات بین سطحی، کمی کاهش می‌یابد [22].

لازم به ذکر است که جذب آب بر خواص عایق بودن کامپوزیت‌ها اثر می‌گذارد. حضور آب آزاد در ریزترکها می‌تواند خاصیت عایق بودن کامپوزیت را به شدت کاهش دهد.

7-3- تأثیرات حرارتی رطوبتی

درجة حرارت، نقش تعیین‌کننده‌ای در مکانیزم جذب آب کامپوزیت‌ها و تأثیرات متعاقب برگشت‌ناپذیر آن بازی می‌کند. درجة حرارت، بر توزیع آب، میزان آن و سرعت جذب آن، تأثیر می‌گذارد. با افزایش دما، مقدار و سرعت جذب آب سریعاً افزایش می‌یابد [23]. تحقیقات نشان داده است که ضایعات ناشی از قرار دادن کامپوزیت، در آب جوش به مدت چند ساعت، معادل جداشدن اجزاء کامپوزیت، و ترک‌خوردگی آن در اثر قرار گرفتن آن در آب با دمای 50  به مدت 200 روز می‌باشد. در دمای معمولی اطاق، نمونه‌های کامپوزیت هیچگونه خرابی و آسیبی را بروز نداده‌اند. چنین مشاهداتی به توسعة تکنیک‌هایی برای آزمایشات تسریع شدة پیرشدگی کامپوزیت‌ها منجر شده است.

7-4- محیط قلیایی

در کاربرد کامپوزیت‌های با الیاف شیشه در محیط قلیایی، ضروری است که از الیاف شیشة با مقاومت بالای قلیایی استفاده نمود؛ زیرا محلول قلیایی با الیاف شیشه واکنش داده و ژل انبساطی سیلیکا تولید می‌کنند. این نکته به خصوص در کاربرد کامپوزیت‌های با الیاف شیشه به عنوان میلگردهای مسلح کننده بسیار حائز اهمیت می‌باشد. امروزه علاقه به استفاده از میلگردهای FRP از جنس شیشه در رویه‌های بتنی، به عنوان جانشین میلگردهای فولادی که با نمک‌های یخزدا خورده می‌شوند، و نیز در سازه‌های در مجاورت آب افزایش یافته است. با این وجود در فرآیند هیدراسیون سیمان، محلول آب با قلیائیت بالا (pH>12) شده، ایجاد می‌شود. این محلول قلیایی شدید، می‌تواند بر الیاف شیشه تأثیر گذاشته و دوام میلگردهای FRP ساخته شده با الیاف شیشه را کاهش دهد. الیاف شیشة از جنس E-glass که اکثراً ارزان بوده و به کار گرفته می‌شوند، ممکن است مقاومت کافی در مقابل حملة قلیایی‌ها را نداشته باشند. استفاده از رزین وینیل استر با ایجاد یک مانع مؤثر، تا حدودی حملة قلیایی‌ها را کاهش می‌دهد. مقاومت در مقابل حملة قلیایی‌ها را می‌توان با طراحی عضو سازه‌ای برای تحمل سطح تنش‌های کمتر، بهبود داد. همچنین می‌توان برای بهبود دوام، از الیاف شیشه با مقاومت بسیار خوب در مقابل قلیا استفاده نمود.

شایان ذکر است که FRP های ساخته شده از الیاف کربن و آرامید، مطلقاً در مقابل محیط‌های قلیایی از خود ضعفی نشان نمی‌دهند.

7-5- تأثیر دمای پائین

تغییرات شدید دما بر کامپوزیت‌ها چندین اثر عمده به دنبال دارد. اکثر مواد با افزایش دما انبساط پیدا می‌کنند. در کامپوزیت‌های FRP با ماتریس پلیمری، ضریب انبساط حرارتی ماتریس معمولاً در رتبة بالاتری از ضریب انبساط حرارتی الیاف قرار دارد. کاهش دما ناشی از سرد شدن در ضمن مرحلة ساخت و یا شرایط عملکرد کامپوزیت در دمای پایین، باعث انقباض ماتریس خواهد شد. از طرفی انقباض ماتریس با مقاومت الیاف نسبتاً سخت که در مجاورت ماتریس قرار گرفته‌اند، روبرو می‌شود؛ که این مساله تنش‌های پس ماندی را در ریز ساختار ماده به‌جای می‌گذارد. بزرگی تنش‌های پس ماند با اختلاف دما در شرایط عمل‌‌آوری و شرایط عملکرد کامپوزیت متناسب خواهد بود. با این وجود، مگر در محیط فوق‌العاده سرد، تنش‌های پس‌ماند ایجاد شده چندان قابل توجه نخواهد بود. در جایی که تغییر دمای بسیار شدید وجود دارد (مثلاً نواحی نزدیک به قطب شمال و قطب جنوب) ممکن است تنش‌های پس‌ماند بزرگی ایجاد شود که منجر به ایجاد ریزترک در ماده می‌گردد. چنین ریزترکهایی به نوبة خود سختی کامپوزیت را کاهش داده و نفوذپذیری و ورود آب از طریق لایة مرزی ماتریس و الیاف را افزایش می‌دهند و بدین ترتیب در فرآیند تجزیة کامپوزیت شرکت می‌کنند.

تأثیر بسیار مهم دیگر درجه حرارت‌های پایین‌تر، تغییر متناظر در مقاومت و سختی ماتریس است. اکثر مواد رزین ماتریس، با سرد شدن، سخت‌تر و مقاوم‌تر می‌شوند. چنین تغییراتی بر وضعیت شکست اثر می‌گذارد. برای مثال، نشان داده شده است که شکست فشاری نمونه‌های استوانه‌ای کامپوزیت با قطر 38 میلیمتر در دمای 50 نسبت به شکست نمونه‌های مشابه در دمای اطاق با 6/17 درصد افزایش در مقاومت فشاری ولی شکست به صورت تردتر، همراه است [24]. بدین ترتیب جذب انرژی قبل از شکست در دمای پایین‌تر نسبت به دمای اطاق، بیشتر خواهد بود. این جنبة ویژه از نظر آزاد شدن انرژی زیاد در لحظة شکست، در طراحی کامپوزیت‌هایی که تحت بارهای ضربه‌ای و در دمای پایین قرار می‌گیرند، باید در نظر گرفته شود.

7-7- تأثیر تشعشع امواج ماوراء بنفش (UV)

تأثیر نور ماوراء بنفش بر ترکیبات پلیمری کاملاً شناخته شده است. تحت تابش طولانی مدت نور خورشید، ممکن است ماتریس سخت و یا بی‌رنگ شود.  این مساله را عموماً می‌توان با بکارگیری یک پوشش مقاوم در مقابل اشعة ماوراء بنفش بر کامپوزیت، برطرف نمود. در همین ارتباط از جمله مسائل بسیار قابل توجه، زوال فایبرهای پلیمری مسلح کننده نظیر آرامید است. به عنوان مثال برای آرامید ساخته شده از الیاف نازک پس از پنج هفته قرار گرفتن در نور آفتاب فلوریدا، 50 درصد افت مقاومت گزارش شده است [26]. با این وجود این اثر معمولاً سطحی است؛ بنابراین در کامپوزیت‌های ضخیم‌تر، تأثیر  این زوال بر خصوصیات سازه‌ای جزئی است. در مواردی که خواص سطحی نیز مهم تلقی شوند، لازم است ملاحظاتی را جهت کاهش ترک‌خوردگی سطحی تحت اشعة خورشید، منظور نمود.

8- استفاده از مواد FRP به عنوان مسلح‌ کنندة خارجی در سازه‌ها

به دنبال فرسوده شدن سازه‌های زیر‌بنایی و نیاز به تقویت سازه‌ها برای برآورده کردن شرایط سخت‌گیرانة طراحی، طی دو دهة اخیر تأکید فراوانی بر روی تعمیر و مقاوم‌ سازی سازه‌ها در سراسر جهان، صورت گرفته است. از طرفی، بهسازی لرزه‌ای سازه‌ها به‌خصوص در مناطق زلزله‌ خیز، اهمیت فراوانی یافته است. در این میان تکنیک‌های استفاده از مواد مرکب  FRPبه‌عنوان مسلح‌ کنندة خارجی به دلیل خصوصیات منحصر به فرد آن، از جمله مقاومت بالا، سبکی، مقاومت شیمیایی و سهولت اجرا، در مقاوم ‌سازی و احیاء سازه‌ها اهمیت ویژه‌ای پیدا کرده‌اند. از طرف دیگر،  این تکنیک‌ها به دلیل اجرای سریع و هزینه‌های کم جذابیت ویژه‌ای یافته‌اند.

مواد مرکب FRP در ابتدا به‌عنوان مواد مقاوم ‌کنندة خمشی برای پل‌های بتن‌آرمه و همچنین به‌عنوان محصور ‌کننده در ستون‌های بتن آرمه مورد استفاده قرار می‌گرفتند؛ اما به دنبال تلاش‌های تحقیقاتی اولیه، از اواسط دهة 1980 توسعة بسیار زیادی در زمینة استفاده از مواد FRP در مقاوم‌‌سازی سازه‌های مختلف مشاهده می‌شود؛ بطوری‌که دامنة کاربردهای آن به سازه‌هایی با مصالح بنایی، چوبی و حتی فلزی نیز گسترش یافته است. تعداد موارد کاربرد مواد FRP در مقاوم ‌سازی، تعمیر و یا بهسازی سازه‌ها از چند مورد در10 سال پیش، به هزاران مورد در حال حاضر رسیده است. اجزاء سازه‌ای مختلفی شامل تیرها، دال‌ها، ستون‌ها، دیوارهای برشی، اتصالات، دودکش‌ها، طاق‌ها، گنبدها و خرپاها تا کنون توسط مواد  FRP مقاوم شده‌اند.

مقاوم ‌سازی سازه‌های بتن آرمه با مواد FRP

مواد مرکب FRP، دامنة وسیعی از کاربردها را برای مقاوم ‌سازی سازه‌های بتن‌آرمه در مواردی که تکنیک‌های مرسوم مقاوم‌ سازی ممکن است مسئله‌ ساز باشند، به ‌خود اختصاص داده‌اند. برای نمونه، یکی از معمول‌ترین تکنیک‌ها برای بهسازی اجزاء بتن آرمه، استفاده از ورق‌های فولادی است که از بیرون به این اجزاء چسبانده می‌شود. این روش، روشی ساده، مقرون به صرفه و کارا است؛ اما از جهات زیر مسئله‌ ساز است: 1- زوال چسبندگی بین فولاد و بتن که از خوردگی فولاد ناشی می‌شود.

2- مشکلات ساخت صفحات فولادی سنگین در کارگاه ساختمان. 3- نیاز به نصب داربست.

4- محدودیت طول در انتقال صفحات فولادی به کارگاه ساخت (در مورد مقاوم ‌سازی خمشی
اجزاء بلند).

نوارها یا صفحات می‌توانند جایگزینی برای صفحات فولادی باشند. مواد FRP  برخلاف فولاد، تحت تأثیر زوال الکتروشیمیایی قرار نمی‌گیرند و می‌توانند درمقابل خوردگی اسیدها، بازها و نمک‌ها و مواد مهاجم مشابه در دامنة وسیعی از دما مقاومت کنند. در نتیجه نیاز به سیستم‌های حفاظت از خوردگی نمی‌باشد وآماده‌کردن سطوح اعضاء قبل از چسباندن صفحات FRP و نگهداری از آن‌ها بعد از نصب، از صفحات فولادی آسان‌تر است.

علاوه بر این، الیاف مسلح‌کننده در FRP می‌توانند در موضع معین و در نسبت حجمی و جهت خاصی درون ماتریس قرارگیرند تا بیش‌ترین کارایی به‌دست آید. مواد حاصله تنها با درصدی از وزن فولاد، مقاومت و سختی بالایی در جهت الیاف دارند. آن‌ها همچنین حمل و نقل آسان‌تری داشته، نیازمند داربست کمتری برای نصب می‌باشند، و می‌توانند برای مکان‌هایی که دارای دسترسی محدود هستند، مورد استفاده قرار گیرند؛ و پس از نصب، بار اضافی قابل‌توجهی را به سازه تحمیل نمی‌کنند.

روش مرسوم دیگر در مقاوم ‌سازی اعضای بتن‌آرمه، استفاده از پوشش‌هایی از نوع بتن‌آرمه، بتن پاشیدنی و یا فولاد می‌باشد. این روش تا جایی که مربوط به مقاومت، سختی و شکل ‌پذیری می‌شود، کاملا مؤثر است؛ اما باعث افزایش ابعاد مقاطع و بار مردة سازه می‌شود. همچنین این شیوه نیازمند عملیات پر دردسر و تخلیة ساکنین است و به صورت بالقوه باعث افزایش نامطلوب سختی اعضای بتن‌آرمه می شود. به‌عنوان یک جایگزین، صفحات FRP می‌توانند به دور اجزاء بتن‌آرمه پیچیده شوند و افزایش قابل توجه مقاومت و شکل ‌پذیری را به دنبال داشته باشند؛ بدون آن‌که تغییر زیادی در سختی ایجاد نمایند. یک نکتة مهم در ارتباط با مقاوم ‌سازی اعضا با استفادة خارجی از FRP آن است که باید درجة مقاوم‌ سازی (نسبت ظرفیت نهایی عضو مقاوم‌شده به ظرفیت نهایی عضو مقاوم ‌نشده) را محدود کنیم تا حداقل سطح ایمنی در حوادثی مانند آتش ‌سوزی که منجر به از دست رفتن کارایی FRP می‌شوند، حفظ گردد.

شکل 1- نمونه‌هایی از تقویت خمشی و برشی تیر بتن آرمه با ورقه‌های FRP

امروزه مواد کامپوزیتی FRP به وفور جهت تقویت خمشی و برشی تیرهای بتن آرمه به کار می‌روند که نمونه‌ای از آن در شکل 1 نشان داده شده است. در این شکل ملاحظه می‌شود که با متصل کردن صفحات FRP  به وجه پایینی تیر ظرفیت خمشی مثبت و با متصل کردن آن به وجه بالایی تیر ظرفیت خمشی منفی حاصل می‌شود. هم‌چنین می‌توان با اتصال صفحات FRP  به دو وجه کناری تیر، ظرفیت برشی مناسبی فراهم نمود.

در شکست تیرهای بتن‌آرمة تقویت شده با صفحات FRP مکانیزم‌های مختلف شکست، ازجمله گسیختگی صفحات FRP، خرد شدگی بتن، شکست برشی بتن و ترک ‌خوردگی در محل اتصال چسب با بتن، گزارش شده است. همچنین نشان داده شده است که نوع FRP، ضخامت و طول آن باعث ایجاد انواع مختلفی از شکست نرم یا ترد می‌شود. بخصوص خواص مکانیکی ناحیة اتصال FRP و بتن از اهمیت خاصی برخوردار است. در این میان جدا شدن صفحات FRP از بتن مسالة کاملا حائز اهمیت است و امروزه توجه زیادی را در دنیا به خود جلب می‌نماید. در این ارتباط به نظر می‌رسد که استفاده از تقویت‌کننده‌های خارجی حتی به میزان کم، می‌تواند ایمنی قابل ملاحظه‌ای در برابر جدا شدن صفحات FRP از بتن، و نیز شکست‌های برشی ترد فراهم آورد.

از طرفی مواد کامپوزیتی FRP به وفور جهت تقویت خمشی و فشاری و نیز افزایش شکل پذیری ستون‌ها مورد استفاده قرار می‌گیرند. در همین ارتباط محصور شدگی بتن مهم‌ترین خصوصیتی است که می توان آن را با چسباندن این مواد در اطراف ستون‌ها فراهم نمود. از طرفی استفاده از مواد کامپوزیتی FRP برای افزایش شکل پذیری اتصالات و رفتار مناسب‌تر آن در زلزله نیز بسیار مطلوب خواهد بود.

9 خلاصه و نتیجه ‌گیری

خوردگی اعضاء سازه‌ای بتنی که به صورت متداول با میلگردهای فولادی مسلح شده باشند، در محیط‌های خشن و خورنده یک معضل جدی محسوب می‌شود. این مساله برای اعضاء بتنی سازه‌ای در مجاورت آب و به خصوص در محیط‌های دریایی و ساحلی که در معرض عوامل نمکی و قلیایی، آب در تماس با خاک، هوا و آب‌های زیرزمینی قرار دارند، بسیار جدی‌تر خواهد بود. این مساله هر ساله میلیون‌ها دلار خسارت ر سراسر دنیا به بار می‌آورد. اگر چه تا کنون روش‌های مختلفی نظیر حفاظت کاتدیدیک و یا پوشش قطعات فولادی و میلگردها با اپوکسی جهت فائق آمدن بر این مشکل به کار گرفته شده است، به نظر می‌رسد که جانشینی کامل قطعات فولادی و میلگردهای فولادی با یک مادة  مقاوم در مقابل خوردگی، یک راه حل بسیار اساسی و بدیع، در حذف کامل خوردگی اجزاء فولادی به شمار آید.

محصولات کامپوزیتی FRP  با مقاومت بسیار عالی، در مقابل خوردگی در محیط‌های خشن و خورنده، توجه بسیاری از محققین و مهندسین در سراسر دنیا را به عنوان یک جانشین مناسب قطعات فولادی و میلگردهای فولادی در سازه‌های مجاور آب به خود جلب نموده است. اگر چه مزیت اصلی محصولات FRP مقاومت آنها در مقابل خوردگی است، خواص دیگری از آنها، نظیر مقاومت کششی بالا، مدول الاستیسیتة قابل قبول، وزن کم، مقاومت خوب در مقابل خستگی و خزش، خاصیت عایق بودن و چسبندگی خوب با بتن و نیز دوام بسیار خوب از اهمیت بالایی برخوردار بوده و بر جاذبة آنها افزوده است. با این وجود بعضی از اشکالات و معایب این ماده نظیر مشکلات مربوط به خم کردن میله‌های FRP در محل آرماتوربندی، تفاوت خواص حرارتی آنها با بتن و نیز رفتار الاستیک خطی آنها تا لحظة شکست را نباید از نظر دور داشت. در مجموع، توجه بیشتر به کاربرد محصولات کامپوزیتی FRP در سازه‌های بتنی که در محیط‌های خشن و خورنده ساخته می‌شوند، نظیر سازه‌های آبی، ساحلی و دریایی، مشخصاً از آسیب‌های زودرس و ناخواسته و شکست سازه‌های بتنی مسلح در اثر خوردگی میلگردها جلوگیری خواهد نمود.



10- مراجع

 [1] Hamada, H., Fukute, T., and Yamamoto, K., “Bending Behavior of Unbounded Prestressed Concrete Beams Prestressed with CFRP Rods,” Fiber Reinforced Cement and Concrete, Proceedings of the Fourth RILEM International Symposium, Sheffield, 1992, pp. 1015-1026.

 [2] Saadatmanesh, H., and Ehsani, M. R., “RC Beams Strengthened with GFRP Plates, I: Experimental Study,” Journal of Structural Engineering, ASCE, Vol. 117, No. 11, 1991, pp. 3417-3433.

 [3] Bedard, Claude, “Composite Reinforcing Bars: Assessing Their Use in Concrete,” Concrete International, 1992, pp. 55-59.

 [4] Sharp, B. N., “Reinforced and Prestressed Concrete in Maritime Structures,” Proceedings of the Institution of Civil Engineers, Structures and Building, Vol. 116, No. 3, 1996, pp. 449-469.

 [5] Hamid, Ahmad A., “Improving Structural Concrete Durability in the Arabian Gulf,” Concrete International, July, 1995, pp. 32-35.

 [6] Ali, Mohammed Gholam, Dannish, Sami Abdulla, and Al-Hussaini, Adel, “Strength and Durability of Concrete Structures in Bahrain,” Concrete International, July, 1996, pp. 39-45.

 [7] Matta, Z., “Chlorides and Corrosion in the Arabian Gulf Environment,” Concrete International, May, 1992, pp. 47-48.

 [8] Matta, Z., “Deterioration of Concrete Structures in the Arabian Gulf,” Concrete International, Juky, 1993, pp. 33-36.

 [9] Matta, Z., “More Deterioration of Reinforced concrete in the Arabian Gulf,” Concrete International, November, 1993, pp. 50-51.

 [10] Razaqpur, A. G., and Kashef, A. H., “State-of-the-Art on Fiber Reinforced Plastics for Buildings,” Submitted to: Institute for Research in Construction – National Research Council of Canada, Carleton University, Ottawa, 1993.

 [11] Rostasy, F. S., “FRP Tensile Elements for Prestressed Concrete – State of the Art, Potentials and Limits,” Fiber-Reinforced-Plastic Reinforcement for Concrete Structures, International Symposium, ACI-SP-138, 1993, pp. 347-366.

 [12] Minosaku, Koichi, “Using FRP Materials in Prestressed Concrete Structures,” Concrete International, 1992, pp.41-45.

 [13] Erki, M. A., and Rizkalla, S. H., “Anchorages for FRP Reinforcement,” Concrete International, 1993, pp. 54-59.

 [14] Martin, Roderick H., “Fiber Reinforced Plastic Standards for the Offshore Industry,” SAMPE Journal, Society for the Advancement of Material and Process Engineering, 1996, pp. 37-41.

 [15] Yamasaki, Y., Masuda, Y., Tanano, H., and Shimizu, A., “Fundamental Properties of Continuous Fiber Bars,” Fiber-

تاریخ: 1394/09/08      بازدید:16199
فایل ندارد

شرکت کلینیک بتن ایران

شرکت کلینیک بتن ایران

کلینیک فنی و تخصصی بتن ایران در قالب دو شرکت بازرگانی رایحه بتن سبز و مهندسی ژرف تابان مهر در سال 1385 ، با اندیشه ایجاد مرکزی تخصصی و کاربردی در زمینه ارائه خدمات فنی مهندسی ، بازرگانی و آموزشی در سطح کشور و منطقه با محوریت بتن راه اندازی گردیده است . کلینیک فنی و تخصصی بتن ایران در قالب دو شرکت بازرگانی رایحه بتن سبز و مهندسی ژرف تابان مهر در سال 1385 ، با اندیشه ایجاد مرکزی تخصصی و کاربردی در زمینه ارائه خدمات فنی مهندسی ، بازرگانی و آموزشی در سطح کشور و منطقه با محوریت بتن راه اندازی گردیده است . کلینیک فنی و تخصصی بتن ایران، اولین و تنها مجموعه فنی و مهندسی با محوریت بتن در سطح کشور می باشد که توانسته با ارائه خدمات متنوع و تخصصی گامی نو و البته کارآمد در عرصه صنعت بتن کشور بردارد. این امر باعث گردیده تا کارفرمایان ، کارشناسان و مهندسین فعال در عرصه بتن کشور با در اختیار داشتن تیم کارآمد و تخصصی ، در کنار خود ، راه سخت اجرای پروژه عمرانی را با اطمینانی بیشتر و با کیفیت تر بردارند. کلینیک فنی و تخصصی بتن ایران، با به کارگیری تیم های کارشناسی ، اجرایی ، تخصصی ، بازرگانی و آموزشی از میان فعالان و متخصصین بتن برجسته کشور و همکاری اساتید برجسته ، همواره سعی دارد تا با اولویت قراردهی کیفیت و تخصص باعث ارتقاء سطح کیفی ، مهندسی و اجرایی پروژه ها و با رفتن سطح عملی دست اندرکاران گردد. در این راستا ، کلینیک فنی و تخصصی بتن ایران فعالیت خود را در سه شاخه کارشناسی - فنی و مهندسی ، آموزش و بازرگانی هدف دهی و پیگیری نموده و خواهد نمود و در این راستا موفق به اخذ ایزو 9001 ، ایزو 14001 ، ایزو 28001 و ایزو 29001 گردید است. هيات مديره اين شركت با اعتقاد و انديشه هميشگي به حضوري كارآمد و مثمر ثمر در جريان خروشان آباداني ايران عزيز و با بهره گيري از تجارب چندين ساله كارشناسان خود در پروژه های بزرگ عمراني در سطح كشور از يك سو و نيز تلفيق توامان آن با علوم روز مهندسي و اجرايي از سوي ديگر همواره سعي مي نمايد با حضور موثر خود در گستره پهناور عمران ايران ، گامي هر چند كوچك در راستاي ارتقا سطح كيفي پروژه هاي عمراني بردارد. از اين رو اميد است بتوانيم در اين راه حركتي درخور انجام نمايم.

با احترام-مدير عامل ايمان غلامي نيگچه


افراد آنلاین : 86   نفر    بازدید امروز : 7721   نفر    بازدید دیروز : 9233   نفر    بازدید  این ماه :  7721   نفر    بازدید ماه گذشته : 284288   نفر    بازدید کل : 13023511   نفر   
.کليه حقوق اين وب سایت متعلق به کلینیک بتن ایران است © توسعه دهنده:پرشیاداده